numpy - 为什么 Z[(0,2)] 是视图而 Z[(0, 2), (0)] 是副本?

numpy - why Z[(0,2)] is view but Z[(0, 2), (0)] is copy?

问题

为什么 numpy 元组索引行为不一致?请解释这些行为背后的理性或设计决定。在我的理解中,Z[(0,2)]Z[(0, 2), (0)] 都是 元组索引 并且期望 copy/view 的一致行为。如果不正确,请解释,

import numpy as np
Z = np.arange(36).reshape(3, 3, 4)
print("Z is \n{}\n".format(Z))

b =  Z[
    (0,2)      # Select Z[0][2]
]
print("Tuple indexing Z[(0,2)] is \n{}\nIs view? {}\n".format(
    b,
    b.base is not None
))

c = Z[         # Select Z[0][0][1] & Z[0][2][1]
    (0,2),
    (0)
]
print("Tuple indexing Z[(0, 2), (0)] is \n{}\nIs view? {}\n".format(
    c,
    c.base is not None
))
Z is 
[[[ 0  1  2  3]
  [ 4  5  6  7]
  [ 8  9 10 11]]

 [[12 13 14 15]
  [16 17 18 19]
  [20 21 22 23]]

 [[24 25 26 27]
  [28 29 30 31]
  [32 33 34 35]]]

Tuple indexing Z[(0,2)] is 
[ 8  9 10 11]
Is view? True

Tuple indexing Z[(0, 2), (0)] is 
[[ 0  1  2  3]
 [24 25 26 27]]
Is view? False

Numpy 索引令人困惑,想知道人们是如何建立理解的。如果有好的理解方法或者备忘单,请指教

创建元组的是逗号。 () 只是在需要的地方设置边界。

因此

Z[(0,2)]
Z[0,2]

相同,select 在第一个 2 维上。 returns 是一个元素还是一个数组取决于 Z 有多少维度。

同样的解释适用于另一种情况。

Z[(0, 2), (0)]
Z[( np.array([0,2]), 0)]
Z[ np.array([0,2]), 0]

相同 - 第一个维度使用 list/array 进行索引,因此是高级索引。是副本。

[ 8  9 10 11]

是3d数组的一行;它是 Z

的连续块
[[ 0  1  2  3]
 [24 25 26 27]]

Z 的 2 行。它们不连续,因此无法仅通过形状和步幅(以及数据缓冲区中的偏移量)来识别它们。

详情

__array_interface__给出数组底层数据的详细信息

In [146]: Z = np.arange(36).reshape(3,3,4)
In [147]: Z.__array_interface__
Out[147]: 
{'data': (38255712, False),
 'strides': None,
 'descr': [('', '<i8')],
 'typestr': '<i8',
 'shape': (3, 3, 4),
 'version': 3}
In [148]: Z.strides
Out[148]: (96, 32, 8)

对于视图:

In [149]: Z1 = Z[0,2]
In [150]: Z1
Out[150]: array([ 8,  9, 10, 11])
In [151]: Z1.__array_interface__
Out[151]: 
{'data': (38255776, False),    # 38255712+8*8
 'strides': None,
 'descr': [('', '<i8')],
 'typestr': '<i8',
 'shape': (4,),
 'version': 3}

数据缓冲区指针是 Z 缓冲区中的 8 个元素。身材变小了很多。

In [152]: Z2 = Z[[0,2],0]
In [153]: Z2
Out[153]: 
array([[ 0,  1,  2,  3],
       [24, 25, 26, 27]])
In [154]: Z2.__array_interface__
Out[154]: 
{'data': (31443104, False),     # an entirely different location
 'strides': None,
 'descr': [('', '<i8')],
 'typestr': '<i8',
 'shape': (2, 4),
 'version': 3}

Z2 与两个 select 离子相同:

In [158]: Z[0,0]
Out[158]: array([0, 1, 2, 3])
In [159]: Z[2,0]
Out[159]: array([24, 25, 26, 27])

不是

Z[0][0][1] & Z[0][2][1]
Z[0,0,1] & Z[0,2,1]

将其与 2 行切片进行比较:

In [156]: Z3 = Z[0:2,0]
In [157]: Z3.__array_interface__
Out[157]: 
{'data': (38255712, False),   # same as Z's
 'strides': (96, 8),
 'descr': [('', '<i8')],
 'typestr': '<i8',
 'shape': (2, 4),
 'version': 3}

如果新数组可以用shapestrides和原始数据缓冲区的全部或部分来描述,则返回一个视图。