使用sqlalchemy从Pandas Dataframe到pyodbc(Azure SQL DB):从字符串转换日期and/or时间时转换失败

From Pandas Dataframe to pyodbc (Azure SQL DB) using sqlalchemy: Conversion failed when converting date and/or time from character string

我正在尝试通过在 Azure Databricks 上启动 Python 脚本,以增量方式将 Salesforce 数据加载到 Azure SQL 数据库。

由于我无法在 Azure Databricks 中安装 Devart ODBC,我正在尝试使用 simple_salesforce 从 salesforce 获取数据:

import pandas as pd
import pyodbc
from simple_salesforce import Salesforce, SalesforceLogin, SFType
from sqlalchemy.types import Integer, Text, String, DateTime
from sqlalchemy import create_engine
import urllib

sf = Salesforce(password = password, username=username, security_token=jeton)
rep_qr = "SELECT SOMETHING FROM Account WHERE CONDITION"
soql = prep_qr.format(','.join(field_names))
results = sf.query_all(soql)['records']

我得到以下结果(示例):

[OrderedDict([('attributes', OrderedDict([('type', 'Account'), ('url', '/services/data/v42.0/sobjects/Account/0014K000009aoU3QAI')])), ('Id', XY1), (Name, Y), (Date, 2020-11-24T09:16:17.000+0000)])]

然后我将输出转换为 pandas Dataframe:

results = pd.DataFrame(sf.query_all(soql)['records'])
results.drop(columns=['attributes'], inplace=True) #to keep only the columns

我得到了这样的东西(只是一个例子):

Id Name Date
XY1 Y 2020-11-24T09:16:17.000+0000

为了将此数据摄取到 Azure SQL 数据库中,我使用“sqlalchemy”将 Dataframe 转换为 sql,然后 pyodbc 将负责插入部分进入目标(Azure SQL 数据库),如下所示:

df = pd.DataFrame(results)
df.reset_index(drop=True, inplace=True) #just to remove the index from dataframe

#Creating the engine from and pyodbc which is connected to Azure SQL Database:
params = urllib.parse.quote_plus \
                (r'DRIVER={ODBC Driver 17 for SQL Server};SERVER=' + server + ';DATABASE=' + database + ';UID=' + username + ';PWD=' + password)
conn_str = 'mssql+pyodbc:///?odbc_connect={}'.format(params)
engine_azure = create_engine(conn_str, echo=True)
df.to_sql('account',engine_azure,if_exists='append', index=False)

但是我得到以下错误:

sqlalchemy.exc.DataError: (pyodbc.DataError) ('22007', '[22007] [Microsoft][ODBC Driver 17 for SQL Server][SQL Server]Conversion failed when converting date and/or time from character string. (241) (SQLExecDirectW)')

我认为问题是库 simple_salesforce 以这种格式带来 date/time:

2020-11-24T09:16:17.000+0000

但在 Azure SQL 数据库中它应该是这样的:

2020-11-24T09:16:17.000

这里的问题是我正在动态加载表(我什至不知道我正在加载的表和列),这是我无法转换这些数据类型的原因,我需要一种方法自动将数据类型传递给 pyodbc。

请问有什么推荐的吗?

谢谢,

如果 date/time 值始终作为 2020-11-24T11:22:33.000+0000 形式的字符串返回,那么您可以使用 pandas' .apply() 方法将字符串转换为 2020-11-24 11:22:33.000 SQL 服务器将接受的格式:

df = pd.DataFrame(
    [
        (1, "2020-11-24T11:22:33.000+0000"),
        (2, None),
        (3, "2020-11-24T12:13:14.000+0000"),
    ],
    columns=["id", "dtm"],
)
print(df)
"""console output:
   id                           dtm
0   1  2020-11-24T11:22:33.000+0000
1   2                          None
2   3  2020-11-24T12:13:14.000+0000
"""

df["dtm"] = df["dtm"].apply(lambda x: x[:23].replace("T", " ") if x else None)
print(df)
"""console output:
   id                      dtm
0   1  2020-11-24 11:22:33.000
1   2                     None
2   3  2020-11-24 12:13:14.000
"""

df.to_sql(
    table_name,
    engine,
    index=False,
    if_exists="append",
)

with engine.begin() as conn:
    pprint(conn.execute(sa.text(f"SELECT * FROM {table_name}")).fetchall())
"""console output:
[(1, datetime.datetime(2020, 11, 24, 11, 22, 33)),
 (2, None),
 (3, datetime.datetime(2020, 11, 24, 12, 13, 14))]
"""