使用 pandas GroupBy 和时间序列重采样的平均聚合

Mean Aggregations using pandas GroupBy and Time Series resampling

我在使用 Pandas groupby 功能和时间序列时遇到问题。我已阅读文档,但看不出如何将聚合函数应用于多列并正确计算“聚合”的体积(平均值)的平均值。

这是我导入 CSV 文件的代码:

#CSV Import
import pandas as pd
path = r'Z:\Python_Min_Data.txt'

from datetime import datetime
customdateparse = lambda x: datetime.strptime(x, '%Y/%m/%d %H:%M:%S.%f')
df = pd.read_csv(
        path,
        parse_dates={'DateTime': [0, 1]},
        date_parser=customdateparse)

# Set the Date as the Index --> needed for Resampling
df.set_index('DateTime', inplace=True)
df.sort_index()     

这是导入后的DataFrame:

df
Out[3]: 
                     Volume Session
DateTime                           
2020-12-16 08:00:00    1000    PRTH
2020-12-16 08:30:00    5000    PRTH
2020-12-16 09:00:00    1000     RTH
2020-12-16 09:30:00    3000     RTH
2020-12-17 08:00:00    2000    PRTH
2020-12-17 08:30:00    2000    PRTH
2020-12-17 09:00:00    2000     RTH
2020-12-17 09:30:00    2000     RTH
2020-12-18 08:00:00    1000    PRTH
2020-12-18 08:30:00    1000    PRTH
2020-12-18 09:00:00    1000     RTH
2020-12-18 09:30:00    1000     RTH
2019-11-18 08:00:00    1000    PRTH
2019-11-18 08:30:00    1000    PRTH
2019-11-18 09:00:00    1000     RTH
2019-11-18 09:30:00    1000     RTH

这是我试过的: 由于时间序列重采样,它计算每天的平均值。 我希望它首先对值求和,最后计算均值。 但它对每天的所有数据取平均值。

#2.Volume: Average per Year & Session & Day
funcs_year    = lambda idx: idx.year
(df
   .groupby([funcs_year,'Session', pd.Grouper(freq='D')])
    ['Volume']
   .mean()
)

Out[6]: 
      Session   DateTime  
2019   PRTH     2019-11-18    1000
       RTH      2019-11-18    1000
2020   PRTH     2020-12-16    3000
                2020-12-17    2000
                2020-12-18    1000
       RTH      2020-12-16    2000
                2020-12-17    2000
                2020-12-18    1000
Name: Volume, dtype: int64

这是我希望正确计算和显示结果的方式(我手动计算的): 每天平均交易量(年份和时段分别显示):

Year    Session     Mean Volume
2020    RTH         3.333,33
        PRTH        4.000,00
2019    RTH         2.000,00
        PRTH        2.000,00

有人知道我遗漏了什么/做错了什么吗?

这对你有用吗:

df['Year']=df['DateTime'].dt.year
(df
   .groupby(['Year','Session'])
   .apply(lambda x: x['Volume'].sum()/len(x['DateTime'].dt.date.unique()))
)

请注意,'DateTime' 现在应该是一列了。

我认为这计算了每年和会话的每天平均音量。你能试一试吗?

以下也应该有效,根据您的问题,'sum' 显示 'sum of Volume' 基于 'Year' 和 'mean' 显示 'mean of volums' 基于 'Daily mean' 均按 'Session' 和 'DateTime' 分组。 (只是使用了一些带连接的群链接)

import pandas as pd

data = { 
'DateTime':['2020-12-16 08:00:00','2020-12-16 08:30:00','2020-12-16 09:00:00','2020-12-16 09:30:00','2020-12-17 08:00:00','2020-12-17 08:30:00','2020-12-17 09:00:00','2020-12-17 09:30:00','2020-12-18 08:00:00','2020-12-18 08:30:00','2020-12-18 09:00:00','2020-12-18 09:30:00','2019-11-18 08:00:00','2019-11-18 08:30:00','2019-11-18 09:00:00','2019-11-18 09:30:00'],
'Volume':[1000,500,1000,3000,2000,2000,2000,2000,1000,1000,1000,1000,1000,1000,1000,1000],
'Session':['PRTH','PRTH','RTH','RTH','PRTH','PRTH','RTH','RTH','PRTH','PRTH','RTH','RTH','PRTH','PRTH','RTH','RTH']
}

df = pd.DataFrame(data)
df['DateTime'] = pd.to_datetime(df['DateTime'])
df.index = pd.to_datetime(df['DateTime'])


#See below code 
x = df.groupby([df.index.strftime('%Y'),'Session',df.index.strftime('%Y-%m-%d')]).agg({'Volume':['sum','mean']}).groupby(['DateTime','Session'],level=2).agg(['sum','mean'])
x['Volume'].drop('mean',axis=1,level=0)