使用 yfinance 和 python 计算股票价值
Calculation of stock values with yfinance and python
我想对 Python 3 中的股票价格进行一些计算,我已经安装了模块 yfinance。
我试着像这样得到一个单独的值:
import yfinance as yf
#define the ticker symbol
tickerSymbol = 'MSFT'
#get data on this ticker
tickerData = yf.Ticker(tickerSymbol)
#get the historical prices for this ticker
tickerDf = tickerData.history(period='1d', start='2015-1-1', end='2020-12-30')
row_date = tickerDf[tickerDf['Date']=='2020-12-30']
value = row_date.Open.item()
#see your data
print (value)
但是当我 运行 这个时,它说:
KeyError: 'Date'
这很奇怪,因为当我这样做时,它运行良好并且我有日期列:
import yfinance as yf
#define the ticker symbol
tickerSymbol = 'MSFT'
#get data on this ticker
tickerData = yf.Ticker(tickerSymbol)
#get the historical prices for this ticker
tickerDf = tickerData.history(period='1d', start='2015-1-1', end='2020-12-30')
#row_date = tickerDf[tickerDf['Date']=='2020-12-30']
#value = row_date.Open.item()
#see your data
print (tickerDf)
我得到以下结果:
G:\python> python test.py
Open High Low Close Volume Dividends Stock Splits
Date
2014-12-31 41.512481 42.143207 41.263744 41.263744 21552500 0.0 0
2015-01-02 41.450302 42.125444 41.343701 41.539135 27913900 0.0 0
2015-01-05 41.192689 41.512495 41.086088 41.157158 39673900 0.0 0
2015-01-06 41.201567 41.530255 40.455355 40.553074 36447900 0.0 0
2015-01-07 40.846223 41.272629 40.410934 41.068310 29114100 0.0 0
... ... ... ... ... ... ... ...
2020-12-22 222.690002 225.630005 221.850006 223.940002 22612200 0.0 0
2020-12-23 223.110001 223.559998 220.800003 221.020004 18699600 0.0 0
2020-12-24 221.419998 223.610001 221.199997 222.750000 10550600 0.0 0
2020-12-28 224.449997 226.029999 223.020004 224.960007 17933500 0.0 0
2020-12-29 226.309998 227.179993 223.580002 224.149994 17403200 0.0 0
[1510 rows x 7 columns]
在幕后,yfinance 使用 Pandas 数据框来创建代码。在这个数据框中,Date
不是一个普通的列,而是给索引的一个名称(参见 base.py of yfinance). The index column behaves differently than other columns and actually can't be referenced by name. You can access it using TickerDf.index=='2020-12-30'
or by turning it into a regular column using reset_index
as explained in another question. Searching through an index is faster 中的第 240 行而不是搜索常规列,所以如果你正在查看大量数据,将其保留为索引对您有利。
我想对 Python 3 中的股票价格进行一些计算,我已经安装了模块 yfinance。
我试着像这样得到一个单独的值:
import yfinance as yf
#define the ticker symbol
tickerSymbol = 'MSFT'
#get data on this ticker
tickerData = yf.Ticker(tickerSymbol)
#get the historical prices for this ticker
tickerDf = tickerData.history(period='1d', start='2015-1-1', end='2020-12-30')
row_date = tickerDf[tickerDf['Date']=='2020-12-30']
value = row_date.Open.item()
#see your data
print (value)
但是当我 运行 这个时,它说:
KeyError: 'Date'
这很奇怪,因为当我这样做时,它运行良好并且我有日期列:
import yfinance as yf
#define the ticker symbol
tickerSymbol = 'MSFT'
#get data on this ticker
tickerData = yf.Ticker(tickerSymbol)
#get the historical prices for this ticker
tickerDf = tickerData.history(period='1d', start='2015-1-1', end='2020-12-30')
#row_date = tickerDf[tickerDf['Date']=='2020-12-30']
#value = row_date.Open.item()
#see your data
print (tickerDf)
我得到以下结果:
G:\python> python test.py
Open High Low Close Volume Dividends Stock Splits
Date
2014-12-31 41.512481 42.143207 41.263744 41.263744 21552500 0.0 0
2015-01-02 41.450302 42.125444 41.343701 41.539135 27913900 0.0 0
2015-01-05 41.192689 41.512495 41.086088 41.157158 39673900 0.0 0
2015-01-06 41.201567 41.530255 40.455355 40.553074 36447900 0.0 0
2015-01-07 40.846223 41.272629 40.410934 41.068310 29114100 0.0 0
... ... ... ... ... ... ... ...
2020-12-22 222.690002 225.630005 221.850006 223.940002 22612200 0.0 0
2020-12-23 223.110001 223.559998 220.800003 221.020004 18699600 0.0 0
2020-12-24 221.419998 223.610001 221.199997 222.750000 10550600 0.0 0
2020-12-28 224.449997 226.029999 223.020004 224.960007 17933500 0.0 0
2020-12-29 226.309998 227.179993 223.580002 224.149994 17403200 0.0 0
[1510 rows x 7 columns]
在幕后,yfinance 使用 Pandas 数据框来创建代码。在这个数据框中,Date
不是一个普通的列,而是给索引的一个名称(参见 base.py of yfinance). The index column behaves differently than other columns and actually can't be referenced by name. You can access it using TickerDf.index=='2020-12-30'
or by turning it into a regular column using reset_index
as explained in another question. Searching through an index is faster 中的第 240 行而不是搜索常规列,所以如果你正在查看大量数据,将其保留为索引对您有利。