如何使用 torch vision 在 Google Colab 上加载 CelebA 数据集,而不 运行 内存不足?
How do I load the CelebA dataset on Google Colab, using torch vision, without running out of memory?
我正在学习 DCGAN 上的教程。每当我尝试加载 CelebA 数据集时,torchvision 都会用完我所有 运行-time 的内存 (12GB) 并且 运行time 崩溃。我正在寻找如何加载和应用转换到数据集的方法,而不会占用我 运行-time 的资源。
复制
这是导致问题的代码部分。
# Root directory for the dataset
data_root = 'data/celeba'
# Spatial size of training images, images are resized to this size.
image_size = 64
celeba_data = datasets.CelebA(data_root,
download=True,
transform=transforms.Compose([
transforms.Resize(image_size),
transforms.CenterCrop(image_size),
transforms.ToTensor(),
transforms.Normalize(mean=[0.5, 0.5, 0.5],
std=[0.5, 0.5, 0.5])
]))
可以找到完整的笔记本here
环境
PyTorch 版本:1.7.1+cu101
是否为调试版本:False
用于构建 PyTorch 的 CUDA:10.1
用于构建 PyTorch 的 ROCM:N/A
OS:Ubuntu 18.04.5 LTS (x86_64)
GCC 版本: (Ubuntu 7.5.0-3ubuntu1~18.04) 7.5.0
Clang 版本:6.0.0-1ubuntu2 (tags/RELEASE_600/final)
CMake版本:3.12.0版
Python版本:3.6(64位运行时间)
CUDA 是否可用:是
CUDA 运行时间版本:10.1.243
GPU型号及配置:GPU 0:Tesla T4
Nvidia驱动版本:418.67
cuDNN 版本:/usr/lib/x86_64-linux-gnu/libcudnn.so.7.6.5
HIP 运行时间版本:N/A
MIOpen 运行时间版本:N/A
相关库的版本:
- [pip3] numpy==1.19.4
- [pip3]火炬==1.7.1+cu101
- [pip3] torchaudio==0.7.2
- pip3] torchsummary==1.5.1
- [pip3] torchtext==0.3.1
- [pip3] torchvision==0.8.2+cu101
- [conda] 无法收集
其他上下文
我尝试过的一些事情是:
- 在不同的行上下载和加载数据集。例如:
# Download the dataset only
datasets.CelebA(data_root, download=True)
# Load the dataset here
celeba_data = datasets.CelebA(data_root, download=False, transforms=...)
- 使用
ImageFolder
数据集 class 而不是 CelebA
class。例如:
# Download the dataset only
datasets.CelebA(data_root, download=True)
# Load the dataset using the ImageFolder class
celeba_data = datasets.ImageFolder(data_root, transforms=...)
在这两种情况下,内存问题仍然存在。
尝试以下操作:
from torchvision.datasets import ImageFolder
from torch.utils.data import DataLoader
from torchvision import transforms
# Root directory for the dataset
data_root = 'data/celeba'
# Spatial size of training images, images are resized to this size.
image_size = 64
# batch size
batch_size = 10
transform=transforms.Compose([
transforms.Resize(image_size),
transforms.CenterCrop(image_size),
transforms.ToTensor(),
transforms.Normalize(mean=[0.5, 0.5, 0.5],
std=[0.5, 0.5, 0.5])
dataset = ImageFolder(data_root, transform)
data_loader = DataLoader(dataset=dataset, batch_size=batch_size, shuffle=True, num_workers=8, drop_last=True)
Dataloader
class 的更多详细信息可以查找 here。
以上回答,礼貌 this kaggle notebook.
我没能找到内存问题的解决方案。但是,我想出了一个解决方法,即自定义数据集。这是我的实现:
import os
import zipfile
import gdown
import torch
from natsort import natsorted
from PIL import Image
from torch.utils.data import Dataset
from torchvision import transforms
## Setup
# Number of gpus available
ngpu = 1
device = torch.device('cuda:0' if (
torch.cuda.is_available() and ngpu > 0) else 'cpu')
## Fetch data from Google Drive
# Root directory for the dataset
data_root = 'data/celeba'
# Path to folder with the dataset
dataset_folder = f'{data_root}/img_align_celeba'
# URL for the CelebA dataset
url = 'https://drive.google.com/uc?id=1cNIac61PSA_LqDFYFUeyaQYekYPc75NH'
# Path to download the dataset to
download_path = f'{data_root}/img_align_celeba.zip'
# Create required directories
if not os.path.exists(data_root):
os.makedirs(data_root)
os.makedirs(dataset_folder)
# Download the dataset from google drive
gdown.download(url, download_path, quiet=False)
# Unzip the downloaded file
with zipfile.ZipFile(download_path, 'r') as ziphandler:
ziphandler.extractall(dataset_folder)
## Create a custom Dataset class
class CelebADataset(Dataset):
def __init__(self, root_dir, transform=None):
"""
Args:
root_dir (string): Directory with all the images
transform (callable, optional): transform to be applied to each image sample
"""
# Read names of images in the root directory
image_names = os.listdir(root_dir)
self.root_dir = root_dir
self.transform = transform
self.image_names = natsorted(image_names)
def __len__(self):
return len(self.image_names)
def __getitem__(self, idx):
# Get the path to the image
img_path = os.path.join(self.root_dir, self.image_names[idx])
# Load image and convert it to RGB
img = Image.open(img_path).convert('RGB')
# Apply transformations to the image
if self.transform:
img = self.transform(img)
return img
## Load the dataset
# Path to directory with all the images
img_folder = f'{dataset_folder}/img_align_celeba'
# Spatial size of training images, images are resized to this size.
image_size = 64
# Transformations to be applied to each individual image sample
transform=transforms.Compose([
transforms.Resize(image_size),
transforms.CenterCrop(image_size),
transforms.ToTensor(),
transforms.Normalize(mean=[0.5, 0.5, 0.5],
std=[0.5, 0.5, 0.5])
])
# Load the dataset from file and apply transformations
celeba_dataset = CelebADataset(img_folder, transform)
## Create a dataloader
# Batch size during training
batch_size = 128
# Number of workers for the dataloader
num_workers = 0 if device.type == 'cuda' else 2
# Whether to put fetched data tensors to pinned memory
pin_memory = True if device.type == 'cuda' else False
celeba_dataloader = torch.utils.data.DataLoader(celeba_dataset,
batch_size=batch_size,
num_workers=num_workers,
pin_memory=pin_memory,
shuffle=True)
这个实现是内存高效的,适用于我的用例,即使在训练期间使用的内存平均约为 (4GB)。但是,我希望进一步了解可能导致内存问题的原因。
我正在学习 DCGAN 上的教程。每当我尝试加载 CelebA 数据集时,torchvision 都会用完我所有 运行-time 的内存 (12GB) 并且 运行time 崩溃。我正在寻找如何加载和应用转换到数据集的方法,而不会占用我 运行-time 的资源。
复制
这是导致问题的代码部分。
# Root directory for the dataset
data_root = 'data/celeba'
# Spatial size of training images, images are resized to this size.
image_size = 64
celeba_data = datasets.CelebA(data_root,
download=True,
transform=transforms.Compose([
transforms.Resize(image_size),
transforms.CenterCrop(image_size),
transforms.ToTensor(),
transforms.Normalize(mean=[0.5, 0.5, 0.5],
std=[0.5, 0.5, 0.5])
]))
可以找到完整的笔记本here
环境
PyTorch 版本:1.7.1+cu101
是否为调试版本:False
用于构建 PyTorch 的 CUDA:10.1
用于构建 PyTorch 的 ROCM:N/A
OS:Ubuntu 18.04.5 LTS (x86_64)
GCC 版本: (Ubuntu 7.5.0-3ubuntu1~18.04) 7.5.0
Clang 版本:6.0.0-1ubuntu2 (tags/RELEASE_600/final)
CMake版本:3.12.0版
Python版本:3.6(64位运行时间)
CUDA 是否可用:是
CUDA 运行时间版本:10.1.243
GPU型号及配置:GPU 0:Tesla T4
Nvidia驱动版本:418.67
cuDNN 版本:/usr/lib/x86_64-linux-gnu/libcudnn.so.7.6.5
HIP 运行时间版本:N/A
MIOpen 运行时间版本:N/A
相关库的版本:
- [pip3] numpy==1.19.4
- [pip3]火炬==1.7.1+cu101
- [pip3] torchaudio==0.7.2
- pip3] torchsummary==1.5.1
- [pip3] torchtext==0.3.1
- [pip3] torchvision==0.8.2+cu101
- [conda] 无法收集
其他上下文
我尝试过的一些事情是:
- 在不同的行上下载和加载数据集。例如:
# Download the dataset only
datasets.CelebA(data_root, download=True)
# Load the dataset here
celeba_data = datasets.CelebA(data_root, download=False, transforms=...)
- 使用
ImageFolder
数据集 class 而不是CelebA
class。例如:
# Download the dataset only
datasets.CelebA(data_root, download=True)
# Load the dataset using the ImageFolder class
celeba_data = datasets.ImageFolder(data_root, transforms=...)
在这两种情况下,内存问题仍然存在。
尝试以下操作:
from torchvision.datasets import ImageFolder
from torch.utils.data import DataLoader
from torchvision import transforms
# Root directory for the dataset
data_root = 'data/celeba'
# Spatial size of training images, images are resized to this size.
image_size = 64
# batch size
batch_size = 10
transform=transforms.Compose([
transforms.Resize(image_size),
transforms.CenterCrop(image_size),
transforms.ToTensor(),
transforms.Normalize(mean=[0.5, 0.5, 0.5],
std=[0.5, 0.5, 0.5])
dataset = ImageFolder(data_root, transform)
data_loader = DataLoader(dataset=dataset, batch_size=batch_size, shuffle=True, num_workers=8, drop_last=True)
Dataloader
class 的更多详细信息可以查找 here。
以上回答,礼貌 this kaggle notebook.
我没能找到内存问题的解决方案。但是,我想出了一个解决方法,即自定义数据集。这是我的实现:
import os
import zipfile
import gdown
import torch
from natsort import natsorted
from PIL import Image
from torch.utils.data import Dataset
from torchvision import transforms
## Setup
# Number of gpus available
ngpu = 1
device = torch.device('cuda:0' if (
torch.cuda.is_available() and ngpu > 0) else 'cpu')
## Fetch data from Google Drive
# Root directory for the dataset
data_root = 'data/celeba'
# Path to folder with the dataset
dataset_folder = f'{data_root}/img_align_celeba'
# URL for the CelebA dataset
url = 'https://drive.google.com/uc?id=1cNIac61PSA_LqDFYFUeyaQYekYPc75NH'
# Path to download the dataset to
download_path = f'{data_root}/img_align_celeba.zip'
# Create required directories
if not os.path.exists(data_root):
os.makedirs(data_root)
os.makedirs(dataset_folder)
# Download the dataset from google drive
gdown.download(url, download_path, quiet=False)
# Unzip the downloaded file
with zipfile.ZipFile(download_path, 'r') as ziphandler:
ziphandler.extractall(dataset_folder)
## Create a custom Dataset class
class CelebADataset(Dataset):
def __init__(self, root_dir, transform=None):
"""
Args:
root_dir (string): Directory with all the images
transform (callable, optional): transform to be applied to each image sample
"""
# Read names of images in the root directory
image_names = os.listdir(root_dir)
self.root_dir = root_dir
self.transform = transform
self.image_names = natsorted(image_names)
def __len__(self):
return len(self.image_names)
def __getitem__(self, idx):
# Get the path to the image
img_path = os.path.join(self.root_dir, self.image_names[idx])
# Load image and convert it to RGB
img = Image.open(img_path).convert('RGB')
# Apply transformations to the image
if self.transform:
img = self.transform(img)
return img
## Load the dataset
# Path to directory with all the images
img_folder = f'{dataset_folder}/img_align_celeba'
# Spatial size of training images, images are resized to this size.
image_size = 64
# Transformations to be applied to each individual image sample
transform=transforms.Compose([
transforms.Resize(image_size),
transforms.CenterCrop(image_size),
transforms.ToTensor(),
transforms.Normalize(mean=[0.5, 0.5, 0.5],
std=[0.5, 0.5, 0.5])
])
# Load the dataset from file and apply transformations
celeba_dataset = CelebADataset(img_folder, transform)
## Create a dataloader
# Batch size during training
batch_size = 128
# Number of workers for the dataloader
num_workers = 0 if device.type == 'cuda' else 2
# Whether to put fetched data tensors to pinned memory
pin_memory = True if device.type == 'cuda' else False
celeba_dataloader = torch.utils.data.DataLoader(celeba_dataset,
batch_size=batch_size,
num_workers=num_workers,
pin_memory=pin_memory,
shuffle=True)
这个实现是内存高效的,适用于我的用例,即使在训练期间使用的内存平均约为 (4GB)。但是,我希望进一步了解可能导致内存问题的原因。