Interactive Brokers Python 多品种请求
Interactive Brokers Python Multiple Symbol Request
我能够从 IB 的 documentation/examples 和本网站的论坛中拼凑出一个脚本。我得到了我想要的单个符号的输出,但是,如果我使用股票列表,我无法找到将股票代码传递到 DF 输出文件的方法。我的解决方法是创建一个使用列表序列(见下文)的字典,但是每次呈现符号时,IB 的 api 的输出都会略有变化。我在下面使用的列表通常有 20 多个名字,但可能会更改,我将其删减以便于查看。
@Brian/and 或其他开发人员,如果有办法为每个符号调用创建一个唯一的 ID/sequence 并将其标记为带回的数据,那么我可以使用字典应用符号。在另一个论坛中,您传递了一行 n_id = n_id +1,如果可以应用并且链接到按列表顺序完成的每个特定调用,那么它就可以工作?
from ibapi.client import EClient
from ibapi.wrapper import EWrapper
from ibapi.contract import Contract
import pandas as pd
import threading
import time
from datetime import timedelta
import datetime
class IBapi(EWrapper, EClient):
def __init__(self):
EClient.__init__(self, self)
self.data = [] #Initialize variable to store candle
def historicalData(self, reqId, bar):
#print(f'Time: {bar.date} Close: {bar.close} Volume: {bar.volume}',reqId)
self.data.append([bar.date, bar.close, bar.volume, reqId])
def run_loop():
app.run()
app = IBapi()
app.connect('127.0.0.1', 7496, 123)
#Start the socket in a thread
api_thread = threading.Thread(target=run_loop, daemon=True)
api_thread.start()
time.sleep(1) #Sleep interval to allow time for connection to server
symbols = ['SPY','MSFT','GOOG','AAPL','QQQ','IWM','TSLA']
for sym in symbols:
contract = Contract()
contract.symbol = str(sym)
contract.secType = "STK"
contract.exchange = "SMART"
contract.currency = "USD"
#contract.primaryExchange = "ISLAND"
app.reqHistoricalData(1, contract, "", "1 D", "10 mins", "ADJUSTED_LAST", 1, 2, False, [])
time.sleep(5) #sleep to allow enough time for data to be returned
df = pd.DataFrame(app.data, columns=['DateTime', 'ADJUSTED_LAST','Volume','reqId'])
df['DateTime'] = pd.to_datetime(df['DateTime'],unit='s') #,unit='s')
df['Count'] = df.groupby('DateTime').cumcount()+1
sym_dict = {1:'SPY',2:'MSFT',3:'GOOG',4:'AAPL',5:'QQQ',6:'IWM',7:'TSLA'}
df['Ticker'] = df['Count'].map(sym_dict)
print(df)
#edit,添加@Brian 的详细信息:
from ibapi.client import EClient
from ibapi.wrapper import EWrapper
from ibapi.contract import Contract
import pandas as pd
import time
from datetime import timedelta
import datetime
start = datetime.datetime.utcnow()
class IBapi(EWrapper, EClient):
def __init__(self):
EClient.__init__(self, self)
self.data = []
def error(self, reqId, errorCode, errorString):
print("Error. Id: " , reqId, " Code: " , errorCode , " Msg: " , errorString)
def historicalData(self, reqId, bar):
self.data.append([bar.date, bar.close, bar.volume, sym_dict[reqId]])
print("HistoricalData. ReqId:", sym_dict[reqId], "BarData.", bar)
# include this callback to track progress and maybe disconnectwhen all are finished
def historicalDataEnd(self, reqId: int, start: str, end: str):
print("finished", sym_dict[reqId])
def run_loop():
app.run()
app = IBapi()
app.connect('127.0.0.1', 7496, 123)
# you should wait for nextValidId instead of sleeping, what if it takes more than 1 second? @john: how do i do this?
time.sleep(5) @john: how do i do this? wait for nextValidId?
symbols = ['SPY','MSFT','GOOG','AAPL','QQQ','IWM','TSLA']
reqId = 1
sym_dict = {}
for sym in symbols:
contract = Contract()
contract.symbol = str(sym)
sym_dict[reqId] = sym
contract.secType = "STK"
contract.exchange = "SMART"
contract.currency = "USD"
#contract.primaryExchange = "ISLAND" # you may need this for msft
app.reqHistoricalData(reqId, contract, "", "1 D", "10 mins", "ADJUSTED_LAST", 1, 2, False, [])
reqId += 1
time.sleep(5)
df = pd.DataFrame(app.data, columns=['DateTime', 'ADJUSTED_LAST','Volume','sym'])
df['DateTime'] = pd.to_datetime(df['DateTime'],unit='s') #,unit='s')
df = df.set_index(['sym','DateTime']).sort_index()
print(df)
app.disconnect()
你只需要维护一个 reqId 和 symbol 的字典。
我不确定一个 DataFrame 是否是存储数据的最佳方式,但如果这样做,请设置多索引。确定您需要多少数据以及如何将其存储在磁盘上,然后确定数据结构。我建议使用 csv 来提高速度,或者使用 sqlite 来简化操作。 Pandas 两者都可以处理。
我删除了你的评论并添加了一些我自己的评论。
from ibapi.client import EClient
from ibapi.wrapper import EWrapper
from ibapi.contract import Contract
import pandas as pd
import threading
import time
from datetime import timedelta
import datetime
# I added this code to get fake data, works wtihout tws running
from ibapi.common import BarData
from random import random
start = datetime.datetime.utcnow()
def fake_data(reqId, ib):
last = reqId*10
for i in range(60, 0, -10):
bar = BarData();
bar.date = start - timedelta(minutes=i)
last += random() - 0.5
bar.close = last
bar.volume = reqId * 1000
ib.historicalData(reqId, bar)
ib.historicalDataEnd(reqId,"","")
class IBapi(EWrapper, EClient):
def __init__(self):
EClient.__init__(self, self)
self.data = []
#always include this for important messages, also turn on api logging in TWS/IBG
def error(self, reqId, errorCode, errorString):
print("Error. Id: " , reqId, " Code: " , errorCode , " Msg: " , errorString)
def historicalData(self, reqId, bar):
self.data.append([bar.date, bar.close, bar.volume, sym_dict[reqId]])
# include this callback to track progress and maybe disconnectwhen all are finished
def historicalDataEnd(self, reqId: int, start: str, end: str):
print("finished", sym_dict[reqId])
def run_loop():
app.run()
app = IBapi()
app.connect('127.0.0.1', 7496, 123)
# threading is needed only if you plan to interact after run is called
# this is a good way if you use a ui like jupyter
api_thread = threading.Thread(target=run_loop, daemon=True)
api_thread.start()
# you should wait for nextValidId instead of sleeping, what if it takes more than 1 second?
time.sleep(1)
symbols = ['SPY','MSFT','GOOG','AAPL','QQQ','IWM','TSLA']
reqId = 1
sym_dict = {}
for sym in symbols:
contract = Contract()
contract.symbol = str(sym)
sym_dict[reqId] = sym
contract.secType = "STK"
contract.exchange = "SMART"
contract.currency = "USD"
#contract.primaryExchange = "ISLAND" # you may need this for msft
#app.reqHistoricalData(reqId, contract, "", "1 D", "10 mins", "ADJUSTED_LAST", 1, 2, False, [])
fake_data(reqId, app)
reqId += 1
#now you need to sleep(10) to make sure you don't get a pacing error for too many requests
# don't sleep, use historicalDataEnd to know when finished
time.sleep(5)
df = pd.DataFrame(app.data, columns=['DateTime', 'ADJUSTED_LAST','Volume','sym'])
df['DateTime'] = pd.to_datetime(df['DateTime'],unit='s')
#make an index and sort
df = df.set_index(['sym','DateTime']).sort_index()
# now you can use the indexes
print(df.loc[("SPY","2021")])
#don't forget to disconnect somewhere or the clientId will still be in use
我能够从 IB 的 documentation/examples 和本网站的论坛中拼凑出一个脚本。我得到了我想要的单个符号的输出,但是,如果我使用股票列表,我无法找到将股票代码传递到 DF 输出文件的方法。我的解决方法是创建一个使用列表序列(见下文)的字典,但是每次呈现符号时,IB 的 api 的输出都会略有变化。我在下面使用的列表通常有 20 多个名字,但可能会更改,我将其删减以便于查看。
@Brian/and 或其他开发人员,如果有办法为每个符号调用创建一个唯一的 ID/sequence 并将其标记为带回的数据,那么我可以使用字典应用符号。在另一个论坛中,您传递了一行 n_id = n_id +1,如果可以应用并且链接到按列表顺序完成的每个特定调用,那么它就可以工作?
from ibapi.client import EClient
from ibapi.wrapper import EWrapper
from ibapi.contract import Contract
import pandas as pd
import threading
import time
from datetime import timedelta
import datetime
class IBapi(EWrapper, EClient):
def __init__(self):
EClient.__init__(self, self)
self.data = [] #Initialize variable to store candle
def historicalData(self, reqId, bar):
#print(f'Time: {bar.date} Close: {bar.close} Volume: {bar.volume}',reqId)
self.data.append([bar.date, bar.close, bar.volume, reqId])
def run_loop():
app.run()
app = IBapi()
app.connect('127.0.0.1', 7496, 123)
#Start the socket in a thread
api_thread = threading.Thread(target=run_loop, daemon=True)
api_thread.start()
time.sleep(1) #Sleep interval to allow time for connection to server
symbols = ['SPY','MSFT','GOOG','AAPL','QQQ','IWM','TSLA']
for sym in symbols:
contract = Contract()
contract.symbol = str(sym)
contract.secType = "STK"
contract.exchange = "SMART"
contract.currency = "USD"
#contract.primaryExchange = "ISLAND"
app.reqHistoricalData(1, contract, "", "1 D", "10 mins", "ADJUSTED_LAST", 1, 2, False, [])
time.sleep(5) #sleep to allow enough time for data to be returned
df = pd.DataFrame(app.data, columns=['DateTime', 'ADJUSTED_LAST','Volume','reqId'])
df['DateTime'] = pd.to_datetime(df['DateTime'],unit='s') #,unit='s')
df['Count'] = df.groupby('DateTime').cumcount()+1
sym_dict = {1:'SPY',2:'MSFT',3:'GOOG',4:'AAPL',5:'QQQ',6:'IWM',7:'TSLA'}
df['Ticker'] = df['Count'].map(sym_dict)
print(df)
#edit,添加@Brian 的详细信息:
from ibapi.client import EClient
from ibapi.wrapper import EWrapper
from ibapi.contract import Contract
import pandas as pd
import time
from datetime import timedelta
import datetime
start = datetime.datetime.utcnow()
class IBapi(EWrapper, EClient):
def __init__(self):
EClient.__init__(self, self)
self.data = []
def error(self, reqId, errorCode, errorString):
print("Error. Id: " , reqId, " Code: " , errorCode , " Msg: " , errorString)
def historicalData(self, reqId, bar):
self.data.append([bar.date, bar.close, bar.volume, sym_dict[reqId]])
print("HistoricalData. ReqId:", sym_dict[reqId], "BarData.", bar)
# include this callback to track progress and maybe disconnectwhen all are finished
def historicalDataEnd(self, reqId: int, start: str, end: str):
print("finished", sym_dict[reqId])
def run_loop():
app.run()
app = IBapi()
app.connect('127.0.0.1', 7496, 123)
# you should wait for nextValidId instead of sleeping, what if it takes more than 1 second? @john: how do i do this?
time.sleep(5) @john: how do i do this? wait for nextValidId?
symbols = ['SPY','MSFT','GOOG','AAPL','QQQ','IWM','TSLA']
reqId = 1
sym_dict = {}
for sym in symbols:
contract = Contract()
contract.symbol = str(sym)
sym_dict[reqId] = sym
contract.secType = "STK"
contract.exchange = "SMART"
contract.currency = "USD"
#contract.primaryExchange = "ISLAND" # you may need this for msft
app.reqHistoricalData(reqId, contract, "", "1 D", "10 mins", "ADJUSTED_LAST", 1, 2, False, [])
reqId += 1
time.sleep(5)
df = pd.DataFrame(app.data, columns=['DateTime', 'ADJUSTED_LAST','Volume','sym'])
df['DateTime'] = pd.to_datetime(df['DateTime'],unit='s') #,unit='s')
df = df.set_index(['sym','DateTime']).sort_index()
print(df)
app.disconnect()
你只需要维护一个 reqId 和 symbol 的字典。
我不确定一个 DataFrame 是否是存储数据的最佳方式,但如果这样做,请设置多索引。确定您需要多少数据以及如何将其存储在磁盘上,然后确定数据结构。我建议使用 csv 来提高速度,或者使用 sqlite 来简化操作。 Pandas 两者都可以处理。
我删除了你的评论并添加了一些我自己的评论。
from ibapi.client import EClient
from ibapi.wrapper import EWrapper
from ibapi.contract import Contract
import pandas as pd
import threading
import time
from datetime import timedelta
import datetime
# I added this code to get fake data, works wtihout tws running
from ibapi.common import BarData
from random import random
start = datetime.datetime.utcnow()
def fake_data(reqId, ib):
last = reqId*10
for i in range(60, 0, -10):
bar = BarData();
bar.date = start - timedelta(minutes=i)
last += random() - 0.5
bar.close = last
bar.volume = reqId * 1000
ib.historicalData(reqId, bar)
ib.historicalDataEnd(reqId,"","")
class IBapi(EWrapper, EClient):
def __init__(self):
EClient.__init__(self, self)
self.data = []
#always include this for important messages, also turn on api logging in TWS/IBG
def error(self, reqId, errorCode, errorString):
print("Error. Id: " , reqId, " Code: " , errorCode , " Msg: " , errorString)
def historicalData(self, reqId, bar):
self.data.append([bar.date, bar.close, bar.volume, sym_dict[reqId]])
# include this callback to track progress and maybe disconnectwhen all are finished
def historicalDataEnd(self, reqId: int, start: str, end: str):
print("finished", sym_dict[reqId])
def run_loop():
app.run()
app = IBapi()
app.connect('127.0.0.1', 7496, 123)
# threading is needed only if you plan to interact after run is called
# this is a good way if you use a ui like jupyter
api_thread = threading.Thread(target=run_loop, daemon=True)
api_thread.start()
# you should wait for nextValidId instead of sleeping, what if it takes more than 1 second?
time.sleep(1)
symbols = ['SPY','MSFT','GOOG','AAPL','QQQ','IWM','TSLA']
reqId = 1
sym_dict = {}
for sym in symbols:
contract = Contract()
contract.symbol = str(sym)
sym_dict[reqId] = sym
contract.secType = "STK"
contract.exchange = "SMART"
contract.currency = "USD"
#contract.primaryExchange = "ISLAND" # you may need this for msft
#app.reqHistoricalData(reqId, contract, "", "1 D", "10 mins", "ADJUSTED_LAST", 1, 2, False, [])
fake_data(reqId, app)
reqId += 1
#now you need to sleep(10) to make sure you don't get a pacing error for too many requests
# don't sleep, use historicalDataEnd to know when finished
time.sleep(5)
df = pd.DataFrame(app.data, columns=['DateTime', 'ADJUSTED_LAST','Volume','sym'])
df['DateTime'] = pd.to_datetime(df['DateTime'],unit='s')
#make an index and sort
df = df.set_index(['sym','DateTime']).sort_index()
# now you can use the indexes
print(df.loc[("SPY","2021")])
#don't forget to disconnect somewhere or the clientId will still be in use