如何在我的 python 烛台扫描仪中同时扫描多个变量?
How to scan multiple variables simultaneously in my python candlestick scanner?
这是我的烛台扫描仪的代码。我的目标是同时扫描多个变量,但是当我的代码运行时,它只会导致一列错误。如果有人知道如何一次扫描多个自动收报机,那将大有帮助。
import datetime as dt
import pandas_datareader as web
import pandas as pd
start = dt.datetime(2020,12,31)
end = dt.datetime.now()
Stock = ('ANZ.AX','APT.AX','FMG.AX')
df = web.DataReader(Stock, 'yahoo', start, end)
# Change data to omit volume and adjusted close (can change later to display volume)
data = df[['Open', 'High', 'Low', 'Close']]
for i in range(2, df.shape[0]):
current = df.iloc[i, :]
prev = df.iloc[i - 1, :]
prev_2 = df.iloc[i - 2, :]
realbody = abs(current['Open'] - current['Close'])
candle_range = current['High'] - current['Low']
idx = df.index[i]
# Bullish engulfing
df.loc[idx, 'Bullish Engulfing'] = (prev['Open'] > prev['Close']) & (current['Close'] > current['Open']) \
& (current['High'] > prev['High']) & (current['Low'] < prev['Low'])
df.fillna(False, inplace=True)
pd.set_option('display.max_columns', None)
pd.set_option('display.max_rows', None)
print(df['Bullish Engulfing'])
结果代码:
Date
2020-12-30 False
2021-01-03 False
2021-01-05 False
Name: Bullish Engulfing, dtype: bool
问题是您在列上有一个多重索引
import datetime as dt
import pandas_datareader as web
import pandas as pd
start = dt.datetime(2020,12,31)
end = dt.datetime.now()
Stock = ('ANZ.AX','APT.AX','FMG.AX')
df = web.DataReader(Stock, 'yahoo', start, end)
df.columns
给予
MultiIndex([('Adj Close', 'ANZ.AX'),
('Adj Close', 'APT.AX'),
('Adj Close', 'FMG.AX'),
( 'Close', 'ANZ.AX'),
( 'Close', 'APT.AX'),
( 'Close', 'FMG.AX'),
( 'High', 'ANZ.AX'),
( 'High', 'APT.AX'),
( 'High', 'FMG.AX'),
( 'Low', 'ANZ.AX'),
( 'Low', 'APT.AX'),
( 'Low', 'FMG.AX'),
( 'Open', 'ANZ.AX'),
( 'Open', 'APT.AX'),
( 'Open', 'FMG.AX'),
( 'Volume', 'ANZ.AX'),
( 'Volume', 'APT.AX'),
( 'Volume', 'FMG.AX')],
names=['Attributes', 'Symbols'])
你在代码中的什么地方current = df.iloc[i, :]
它没有给你你的想法,因为你仍然有一个多索引
current = df.iloc[1, :]
例如产量
Attributes Symbols
Adj Close ANZ.AX 2.304000e+01
APT.AX 1.190000e+02
FMG.AX 2.480000e+01
Close ANZ.AX 2.304000e+01
APT.AX 1.190000e+02
FMG.AX 2.480000e+01
High ANZ.AX 2.314000e+01
APT.AX 1.223000e+02
FMG.AX 2.480000e+01
Low ANZ.AX 2.276000e+01
APT.AX 1.190000e+02
FMG.AX 2.370000e+01
Open ANZ.AX 2.276000e+01
APT.AX 1.196800e+02
FMG.AX 2.371000e+01
Volume ANZ.AX 3.207879e+06
APT.AX 9.625380e+05
FMG.AX 6.402739e+06
Name: 2021-01-03 00:00:00, dtype: float64
所以当你回信时 df.loc[idx, 'Bullish Engulfing']
这不是特定于股票的。
你最好使用 groupby 并逐个库存进行。
将向您展示如何做到这一点。
这是我的烛台扫描仪的代码。我的目标是同时扫描多个变量,但是当我的代码运行时,它只会导致一列错误。如果有人知道如何一次扫描多个自动收报机,那将大有帮助。
import datetime as dt
import pandas_datareader as web
import pandas as pd
start = dt.datetime(2020,12,31)
end = dt.datetime.now()
Stock = ('ANZ.AX','APT.AX','FMG.AX')
df = web.DataReader(Stock, 'yahoo', start, end)
# Change data to omit volume and adjusted close (can change later to display volume)
data = df[['Open', 'High', 'Low', 'Close']]
for i in range(2, df.shape[0]):
current = df.iloc[i, :]
prev = df.iloc[i - 1, :]
prev_2 = df.iloc[i - 2, :]
realbody = abs(current['Open'] - current['Close'])
candle_range = current['High'] - current['Low']
idx = df.index[i]
# Bullish engulfing
df.loc[idx, 'Bullish Engulfing'] = (prev['Open'] > prev['Close']) & (current['Close'] > current['Open']) \
& (current['High'] > prev['High']) & (current['Low'] < prev['Low'])
df.fillna(False, inplace=True)
pd.set_option('display.max_columns', None)
pd.set_option('display.max_rows', None)
print(df['Bullish Engulfing'])
结果代码:
Date
2020-12-30 False
2021-01-03 False
2021-01-05 False
Name: Bullish Engulfing, dtype: bool
问题是您在列上有一个多重索引
import datetime as dt
import pandas_datareader as web
import pandas as pd
start = dt.datetime(2020,12,31)
end = dt.datetime.now()
Stock = ('ANZ.AX','APT.AX','FMG.AX')
df = web.DataReader(Stock, 'yahoo', start, end)
df.columns
给予
MultiIndex([('Adj Close', 'ANZ.AX'),
('Adj Close', 'APT.AX'),
('Adj Close', 'FMG.AX'),
( 'Close', 'ANZ.AX'),
( 'Close', 'APT.AX'),
( 'Close', 'FMG.AX'),
( 'High', 'ANZ.AX'),
( 'High', 'APT.AX'),
( 'High', 'FMG.AX'),
( 'Low', 'ANZ.AX'),
( 'Low', 'APT.AX'),
( 'Low', 'FMG.AX'),
( 'Open', 'ANZ.AX'),
( 'Open', 'APT.AX'),
( 'Open', 'FMG.AX'),
( 'Volume', 'ANZ.AX'),
( 'Volume', 'APT.AX'),
( 'Volume', 'FMG.AX')],
names=['Attributes', 'Symbols'])
你在代码中的什么地方current = df.iloc[i, :]
它没有给你你的想法,因为你仍然有一个多索引
current = df.iloc[1, :]
例如产量
Attributes Symbols
Adj Close ANZ.AX 2.304000e+01
APT.AX 1.190000e+02
FMG.AX 2.480000e+01
Close ANZ.AX 2.304000e+01
APT.AX 1.190000e+02
FMG.AX 2.480000e+01
High ANZ.AX 2.314000e+01
APT.AX 1.223000e+02
FMG.AX 2.480000e+01
Low ANZ.AX 2.276000e+01
APT.AX 1.190000e+02
FMG.AX 2.370000e+01
Open ANZ.AX 2.276000e+01
APT.AX 1.196800e+02
FMG.AX 2.371000e+01
Volume ANZ.AX 3.207879e+06
APT.AX 9.625380e+05
FMG.AX 6.402739e+06
Name: 2021-01-03 00:00:00, dtype: float64
所以当你回信时 df.loc[idx, 'Bullish Engulfing']
这不是特定于股票的。
你最好使用 groupby 并逐个库存进行。