一个图可能有多个最小生成树

It is possible for a graph to have multiple minimum spanning trees

令G=(V, E) 为无向图,其所有边都具有唯一权重。是真的吗 G 有一个唯一的 MST?或者G也可以有多个MST?

根据 MST 的定义(来源:wikipedia)-

A minimum spanning tree (MST) or minimum weight spanning tree is a subset of the edges of a connected, edge-weighted undirected graph that connects all the vertices together, without any cycles and with the minimum possible total edge weight.

目标是覆盖 所有 个顶点,同时具有 最低 边权重和。此外,生成树 (ST) 是 tree,因此没有循环 -

在上图中,橘子树是ST,但是,只有最上面的树可以是MST(边权和为7)。


编辑

反证法:

G(V,E) be an undirected graph with unique edge weights. Let T_1 and T_2 为图形的两个 distinct 最小生成树。

e_1 be the edge with lowest weight present in T_1, but, not in T_2. Similarly, let e_2 be the edge in T_2, but, not in T_1.

现在,由于边权重是唯一的,不失一般性,令w(e_1)<w(e_2).

此外,如果我们添加 e_1 in T_2, a cycle will form with e_2. To remove the cycle, let us remove the edge e_2 from T_2. Thus, we have a Spanning Tree T = T_2 U e_1 / e_2

这个ST,T, now has total weight less than T_2; but, this is a contradiction, since, T_2已经是MST了。

因此,我们假设 G(V,E) 有两个 MST 是错误的。证明到此结束。