R 仅在 Linux 中的某个 CPU 上运行
R only ever runs on a certain CPU in Linux
我有一台 8 核 RHEL Linux 机器 运行ning R 4.0.2.
如果我向R询问核心数,我可以确认8个可用。
> print(future::availableWorkers())
[1] "localhost" "localhost" "localhost" "localhost" "localhost" "localhost"
[7] "localhost" "localhost"
> print(parallel::detectCores())
[1] 8
但是,如果我运行这个简单的例子
f <- function(out=0) {
for (i in 1:1e10) out <- out + 1
}
output <- parallel::mclapply(1:8, f, mc.cores = 8)
my top
表示仅使用了 1 个核心(因此每个工作人员使用该核心的 1/8,或整个机器的 1/64)。
%Cpu0 :100.0 us, 0.0 sy, 0.0 ni, 0.0 id, 0.0 wa, 0.0 hi, 0.0 si, 0.0 st
%Cpu1 : 0.0 us, 0.0 sy, 0.0 ni,100.0 id, 0.0 wa, 0.0 hi, 0.0 si, 0.0 st
%Cpu2 : 0.0 us, 0.0 sy, 0.0 ni,100.0 id, 0.0 wa, 0.0 hi, 0.0 si, 0.0 st
%Cpu3 : 2.0 us, 0.0 sy, 0.0 ni, 98.0 id, 0.0 wa, 0.0 hi, 0.0 si, 0.0 st
%Cpu4 : 0.0 us, 0.0 sy, 0.0 ni,100.0 id, 0.0 wa, 0.0 hi, 0.0 si, 0.0 st
%Cpu5 : 0.0 us, 0.0 sy, 0.0 ni,100.0 id, 0.0 wa, 0.0 hi, 0.0 si, 0.0 st
%Cpu6 : 0.0 us, 0.0 sy, 0.0 ni,100.0 id, 0.0 wa, 0.0 hi, 0.0 si, 0.0 st
%Cpu7 : 0.0 us, 0.0 sy, 0.0 ni,100.0 id, 0.0 wa, 0.0 hi, 0.0 si, 0.0 st
KiB Mem : 32684632 total, 28211076 free, 2409992 used, 2063564 buff/cache
KiB Swap: 16449532 total, 11475052 free, 4974480 used. 29213180 avail Mem
PID USER PR NI VIRT RES SHR S %CPU %MEM TIME+ COMMAND
3483 user 20 0 493716 57980 948 R 1.8 0.2 0:18.09 R
3479 user 20 0 493716 57980 948 R 1.5 0.2 0:18.09 R
3480 user 20 0 493716 57980 948 R 1.5 0.2 0:18.08 R
3481 user 20 0 493716 57980 948 R 1.5 0.2 0:18.09 R
3482 user 20 0 493716 57980 948 R 1.5 0.2 0:18.09 R
3484 user 20 0 493716 57980 948 R 1.5 0.2 0:18.09 R
3485 user 20 0 493716 57980 948 R 1.5 0.2 0:18.09 R
3486 user 20 0 493716 57980 948 R 1.5 0.2 0:18.09 R
有人知道这里会发生什么吗?记录类似行为的另一个 Whosebug 问题是 here. It's clear that I messed up the install somehow. I followed these install instructions for RHEL 7。我猜缺少依赖项,但我不知道去哪里找。如果有人对 运行 的诊断有任何想法,将不胜感激。
关于进一步的上下文,我的机器上也安装了 R 3.4.1,当我 运行 这段代码时,一切正常。 (我通过 yum
安装了那个版本。)
我昨天也使用上面链接的相同说明安装了 R 4.0.3,但它遇到了同样的问题。
第一个运行
system(sprintf("taskset -p 0xffffffff %d", Sys.getpid()))
那么你的简单例子
f <- function(out=0) { for (i in 1:1e10) out <- out + 1 }
output <- parallel::mclapply(1:8, f, mc.cores = 8)
适用于所有 8 个内核。
我有一台 8 核 RHEL Linux 机器 运行ning R 4.0.2.
如果我向R询问核心数,我可以确认8个可用。
> print(future::availableWorkers())
[1] "localhost" "localhost" "localhost" "localhost" "localhost" "localhost"
[7] "localhost" "localhost"
> print(parallel::detectCores())
[1] 8
但是,如果我运行这个简单的例子
f <- function(out=0) {
for (i in 1:1e10) out <- out + 1
}
output <- parallel::mclapply(1:8, f, mc.cores = 8)
my top
表示仅使用了 1 个核心(因此每个工作人员使用该核心的 1/8,或整个机器的 1/64)。
%Cpu0 :100.0 us, 0.0 sy, 0.0 ni, 0.0 id, 0.0 wa, 0.0 hi, 0.0 si, 0.0 st
%Cpu1 : 0.0 us, 0.0 sy, 0.0 ni,100.0 id, 0.0 wa, 0.0 hi, 0.0 si, 0.0 st
%Cpu2 : 0.0 us, 0.0 sy, 0.0 ni,100.0 id, 0.0 wa, 0.0 hi, 0.0 si, 0.0 st
%Cpu3 : 2.0 us, 0.0 sy, 0.0 ni, 98.0 id, 0.0 wa, 0.0 hi, 0.0 si, 0.0 st
%Cpu4 : 0.0 us, 0.0 sy, 0.0 ni,100.0 id, 0.0 wa, 0.0 hi, 0.0 si, 0.0 st
%Cpu5 : 0.0 us, 0.0 sy, 0.0 ni,100.0 id, 0.0 wa, 0.0 hi, 0.0 si, 0.0 st
%Cpu6 : 0.0 us, 0.0 sy, 0.0 ni,100.0 id, 0.0 wa, 0.0 hi, 0.0 si, 0.0 st
%Cpu7 : 0.0 us, 0.0 sy, 0.0 ni,100.0 id, 0.0 wa, 0.0 hi, 0.0 si, 0.0 st
KiB Mem : 32684632 total, 28211076 free, 2409992 used, 2063564 buff/cache
KiB Swap: 16449532 total, 11475052 free, 4974480 used. 29213180 avail Mem
PID USER PR NI VIRT RES SHR S %CPU %MEM TIME+ COMMAND
3483 user 20 0 493716 57980 948 R 1.8 0.2 0:18.09 R
3479 user 20 0 493716 57980 948 R 1.5 0.2 0:18.09 R
3480 user 20 0 493716 57980 948 R 1.5 0.2 0:18.08 R
3481 user 20 0 493716 57980 948 R 1.5 0.2 0:18.09 R
3482 user 20 0 493716 57980 948 R 1.5 0.2 0:18.09 R
3484 user 20 0 493716 57980 948 R 1.5 0.2 0:18.09 R
3485 user 20 0 493716 57980 948 R 1.5 0.2 0:18.09 R
3486 user 20 0 493716 57980 948 R 1.5 0.2 0:18.09 R
有人知道这里会发生什么吗?记录类似行为的另一个 Whosebug 问题是 here. It's clear that I messed up the install somehow. I followed these install instructions for RHEL 7。我猜缺少依赖项,但我不知道去哪里找。如果有人对 运行 的诊断有任何想法,将不胜感激。
关于进一步的上下文,我的机器上也安装了 R 3.4.1,当我 运行 这段代码时,一切正常。 (我通过 yum
安装了那个版本。)
我昨天也使用上面链接的相同说明安装了 R 4.0.3,但它遇到了同样的问题。
第一个运行
system(sprintf("taskset -p 0xffffffff %d", Sys.getpid()))
那么你的简单例子
f <- function(out=0) { for (i in 1:1e10) out <- out + 1 }
output <- parallel::mclapply(1:8, f, mc.cores = 8)
适用于所有 8 个内核。