Apache Beam 中的窗口连接

Windowed Joins in Apache Beam

我对 Apache Beam 很陌生并实现了我的第一个管道。

但现在我到了一个地步,我对如何结合 windowing 和加入感到困惑。


问题定义:

我有两个数据流,一个是用户的页面浏览量,另一个是用户的请求。他们共享描述用户会话的密钥 session_id,但每个人都有其他附加数据。

目标是在请求发生之前计算会话中的综合浏览量。这意味着,我想要一个数据流,其中包含每个请求以及请求之前的综合浏览量。假设最后 5 分钟的浏览量就足够了。


我试过的

为了加载请求,我使用了这个代码片段,它从 pubsub 订阅加载请求,然后提取 session_id 作为键。最后,我应用了一个 window,它在收到请求时直接发出每个请求。

    requests = (p
               | 'Read Requests' >> (
                    beam.io.ReadFromPubSub(subscription=request_sub)
                    | 'Extract'        >> beam.Map(lambda x: json.loads(x))
                    | 'Session as Key' >> beam.Map(lambda request: (request['session_id'], request))
                    | 'Window'         >> beam.WindowInto(window.SlidingWindows(5 * 60, 1 * 60, 0),
                            trigger=trigger.AfterCount(1),
                            accumulation_mode=trigger.AccumulationMode.DISCARDING
                    )
                )
            )

同样,此代码段加载综合浏览量,它应用滑动 window,每当综合浏览量进入时就会累积发出。

pageviews = (p
               | 'Read Pageviews' >> (
                  beam.io.ReadFromPubSub(subscription=pageview_sub)
                  | 'Extract'        >> beam.Map(lambda x: json.loads(x))
                  | 'Session as Key' >> beam.Map(lambda pageview: (pageview['session_id'], pageview))
                  | 'Window'         >> beam.WindowInto(
                            windowfn=window.SlidingWindows(5 * 60, 1 * 60, 0),
                            trigger=trigger.AfterCount(1),
                            accumulation_mode=trigger.AccumulationMode.ACCUMULATING
                  )
               )
            )

为了应用连接,我尝试了

combined = (
        {
            'requests': requests,
            'pageviews': pageviews
        }
    | 'Merge' >> beam.CoGroupByKey()
    | 'Print' >> beam.Map(print)
)

当我运行这个管道时,合并的行中从来没有包含请求和综合浏览量的行,只有其中一个。

我的想法是在request之前过滤pageviews,在cogroupby之后统计。我需要做什么?我想我的问题是 windowing 和触发策略。

以低延迟处理请求也很重要,可能会丢弃迟到的综合浏览量。

我自己找到了一个解决方案,如果有人感兴趣,我会提供:

想法

诀窍是使用 beam.Flatten 操作合并两个流,并使用 Stateful DoFn 来计算一个请求之前的综合浏览量。每个流包含 json 个词典。我通过使用 {'request' : request}{'pageview' : pageview} 作为周围块来嵌入它们,这样我就可以在 Stateful DoFn 中将不同的事件分开。我还计算了第一次网页浏览时间戳和自第一次网页浏览以来的秒数。流必须使用 session_id 作为键,这样 Stateful DoFn 只接收一个会话的所有事件。

代码

首先,这是管道代码:

# Beam pipeline, that extends requests by number of pageviews before request in that session
with beam.Pipeline(options=options) as p:
    # The stream of requests
    requests = (
          'Read from PubSub subscription'   >> beam.io.ReadFromPubSub(subscription=request_sub)
        | 'Extract JSON'                    >> beam.ParDo(ExtractJSON())
        | 'Add Timestamp'                   >> beam.ParDo(AssignTimestampFn())
        | 'Use Session ID as stream key'    >> beam.Map(lambda request: (request['session_id'], request))
        | 'Add type of event'               >> beam.Map(lambda r: (r[0], ('request', r[1])))
    )

    # The stream of pageviews
    pageviews = (
          'Read from PubSub subscription'   >> beam.io.ReadFromPubSub(subscription=pageview_sub)
        | 'Extract JSON'                    >> beam.ParDo(ExtractJSON())
        | 'Add Timestamp'                   >> beam.ParDo(AssignTimestampFn())
        | 'Use Session ID as stream key'    >> beam.Map(lambda pageview: (pageview['session_id'], pageview))
        | 'Add type of event'               >> beam.Map(lambda p: (p[0], ('pageview', p[1])))
    )

    # Combine the streams and apply Stateful DoFn
    combined = (
        (
            p | ('Prepare requests stream' >> requests),
            p | ('Prepare pageviews stream' >> pageviews)
        )
        | 'Combine event streams'       >> beam.Flatten()
        | 'Global Window'               >> beam.WindowInto(windowfn=window.GlobalWindows(),
                                                            trigger=trigger.AfterCount(1),
                                                            accumulation_mode=trigger.AccumulationMode.DISCARDING)
        | 'Stateful DoFn'               >> beam.ParDo(CountPageviews())
        | 'Compute processing delay'    >> beam.ParDo(LogTimeDelay())
        | 'Format for BigQuery output'  >> beam.ParDo(FormatForOutputDoFn())
    )

    # Write to BigQuery.
    combined | 'Write' >> beam.io.WriteToBigQuery(
        requests_extended_table,
        schema=REQUESTS_EXTENDED_TABLE_SCHEMA,
        create_disposition=beam.io.BigQueryDisposition.CREATE_IF_NEEDED,
        write_disposition=beam.io.BigQueryDisposition.WRITE_APPEND)

有趣的部分是使用 beam.Flatten 和应用有状态 DoFn CountPageviews()

的两个流的组合

这是使用的自定义 DoFns 的代码:

# This DoFn just loads a json message
class ExtractJSON(beam.DoFn):
  def process(self, element):
    import json

    yield json.loads(element)

# This DoFn adds the event timestamp of messages into it json elements for further processing
class AssignTimestampFn(beam.DoFn):
  def process(self, element, timestamp=beam.DoFn.TimestampParam):
    import datetime

    timestamped_element = element
    timestamp_utc = datetime.datetime.utcfromtimestamp(float(timestamp))
    timestamp = timestamp_utc.strftime("%Y-%m-%d %H:%M:%S")
    timestamped_element['timestamp_utc'] = timestamp_utc
    timestamped_element['timestamp'] = timestamp
    yield timestamped_element

# This class is a stateful dofn
# Input elements should be of form (session_id, {'event_type' : event}
# Where events can be requests or pageviews
# It computes on a per session basis the number of pageviews and the first pageview timestamp
# in its internal state
# Whenever a request comes in, it appends the internal state to the request and emits
# a extended request
# Whenever a pageview comes in, the internal state is updated but nothing is emitted
class CountPageviewsStateful(beam.DoFn):
  # The internal states
  NUM_PAGEVIEWS = userstate.CombiningValueStateSpec('num_pageviews', combine_fn=sum)
  FIRST_PAGEVIEW = userstate.ReadModifyWriteStateSpec('first_pageview', coder=beam.coders.VarIntCoder())

  def process(self,
              element,
              num_pageviews_state=beam.DoFn.StateParam(NUM_PAGEVIEWS),
              first_pageview_state=beam.DoFn.StateParam(FIRST_PAGEVIEW)
              ):
    import datetime

    # Extract element
    session_id = element[0]
    event_type, event = element[1]

    # Process different event types
    # Depending on event type, different actions are done
    if event_type == 'request':
        # This is a request
        request = event

        # First, the first pageview timestamp is extracted and the seconds since first timestamp are calculated
        first_pageview = first_pageview_state.read()
        if first_pageview is not None:
            seconds_since_first_pageview = (int(request['timestamp_utc'].timestamp()) - first_pageview)

            first_pageview_timestamp_utc = datetime.datetime.utcfromtimestamp(float(first_pageview))
            first_pageview_timestamp = first_pageview_timestamp_utc.strftime("%Y-%m-%d %H:%M:%S")
        else:
            seconds_since_first_pageview = -1
            first_pageview_timestamp = None

        # The calculated data is appended to the request
        request['num_pageviews'] = num_pageviews_state.read()
        request['first_pageview_timestamp'] = first_pageview_timestamp
        request['seconds_since_first_pageview'] = seconds_since_first_pageview
        
        # The pageview counter is reset
        num_pageviews_state.clear()
        
        # The request is returned
        yield (session_id, request)
    elif event_type == 'pageview':
        # This is a pageview
        pageview = event

        # Update first pageview state
        first_pageview = first_pageview_state.read()
        if first_pageview is None:
            first_pageview_state.write(int(pageview['timestamp_utc'].timestamp()))
        elif first_pageview > int(pageview['timestamp_utc'].timestamp()):
            first_pageview_state.write(int(pageview['timestamp_utc'].timestamp()))

        # Increase number of pageviews
        num_pageviews_state.add(1)
          
        # Do not return anything, pageviews are not further processed

# This DoFn logs the delay between the event time and the processing time
class LogTimeDelay(beam.DoFn):
  def process(self, element, timestamp=beam.DoFn.TimestampParam):
    import datetime
    import logging

    timestamp_utc = datetime.datetime.utcfromtimestamp(float(timestamp))
    seconds_delay = (datetime.datetime.utcnow() - timestamp_utc).total_seconds()

    logging.warning('Delayed by %s seconds', seconds_delay)

    yield element

这似乎有效,并且让我在直接跑步者上平均延迟大约 1-2 秒。在 Cloud Dataflow 上,平均延迟约为 0.5-1 秒。所以总而言之,这似乎解决了问题定义。

进一步考虑

不过还有一些悬而未决的问题:

  • 我正在使用全局 windows,这意味着就我而言,内部状态将永远保持。也许会话 windows 是正确的方法:当 x 秒内没有 pageviews/requests 时,window 关闭并释放内部状态。
  • 处理延迟有点高,但也许我需要稍微调整一下 pubsub 部分。
  • 我不知道这个解决方案比标准光束方法增加了多少开销或内存消耗。我也没有测试高工作负载和并行化。