如何计算 pandas 数据框中子组中项目的成对出现?
How to count paired occurence of items within subgroups in a pandas dataframe?
假设我有一个这样的数据框:
import pandas as pd
data = {'group': ['a', 'a', 'a', 'a', 'b', 'b', 'b', 'c', 'c', 'c', 'c', 'c'],
'item': ['Apple', 'Chocolate', 'Beans', 'Apple', 'Beans', 'Banana', 'Banana', 'Chocolate', 'Banana', 'Orange', 'Apple', 'Apple' ]
}
df = pd.DataFrame(data, columns = ['group','item'])
df
0 a Apple
1 a Chocolate
2 a Beans
3 a Apple
4 b Beans
5 b Banana
6 b Banana
7 c Chocolate
8 c Banana
9 c Orange
10 c Apple
11 c Apple
如何计算组内成对出现的总数?
我想得到一个table,其中包含组中出现的每个项目组合并获取它们的频率。如果一组下有两个相同的项目,我想保留项目与自身的组合,但只有在与其他项目匹配时才算作一个。
理想情况下,我想获得一个在轴、行和列上都带有项目名称的数据框,并且矩阵的一半具有相应的值。
在一列中包含组合而在另一列中包含值的数据框也可以完美地完成。
上面的例子会翻译成这样:
apple - chocolate 2
apple - apple 2
apple - beans 1
apple - Orange 1
apple - Banana 1
chocolate - Beans 1
beans - banana 1
banana - banana 1
chocolate - banana 1
chocolate - orange 1
banana - orange 1
所以我想我会先使用不重复的组合和计数器,然后再添加匹配自己的项目。原因是为了避免为同一组下的多个项目组合计算多个匹配项。但是,当我尝试这样做时,某些组合会以不同的顺序出现两次,例如苹果 - 巧克力和巧克力 - 苹果。这是我的代码:
from collections import Counter
from itertools import combinations
df = df.groupby('group').filter(lambda g: len(g) > 1).drop_duplicates(subset=['group', 'item'], keep="first")
result = df.groupby(['group']).agg(lambda g: list(set(combinations(g, 2))))
combos = pd.DataFrame(Counter(result.item.sum()).items(), columns=['combos', 'count'])
combos
combos count
0 (Apple, Beans) 1
1 (Apple, Chocolate) 1
2 (Chocolate, Beans) 1
3 (Beans, Banana) 1
4 (Chocolate, Orange) 1
5 (Orange, Apple) 1
6 (Banana, Orange) 1
7 (Banana, Apple) 1
8 (Chocolate, Banana) 1
9 (Chocolate, Apple) 1
请帮帮我!
对您的代码稍作调整即可解决您的问题
## No need to drop to duplicates as you create a set of the combinations, so they won't be counted twice
# df = df.groupby('group').filter(lambda g: len(g) > 1).drop_duplicates(subset=['group', 'item'], keep="first")
## Sorted g, so the problem with tuples that are ordered differently is solved
result = df.groupby(['group']).agg(lambda g: list(set(combinations(sorted(g), 2))))
combos = pd.DataFrame(Counter(result.item.sum()).items(), columns=['combos', 'count'])
combos
combos count
0 (Apple, Beans) 1
1 (Beans, Chocolate) 1
2 (Apple, Apple) 2
3 (Apple, Chocolate) 2
4 (Banana, Banana) 1
5 (Banana, Beans) 1
6 (Apple, Banana) 1
7 (Banana, Orange) 1
8 (Apple, Orange) 1
9 (Chocolate, Orange) 1
10 (Banana, Chocolate) 1
用 ##
标记了我的更改
您当然可以使用
轻松地在后缀中排序结果
combos.sort_values('count', ascending=False)
假设我有一个这样的数据框:
import pandas as pd
data = {'group': ['a', 'a', 'a', 'a', 'b', 'b', 'b', 'c', 'c', 'c', 'c', 'c'],
'item': ['Apple', 'Chocolate', 'Beans', 'Apple', 'Beans', 'Banana', 'Banana', 'Chocolate', 'Banana', 'Orange', 'Apple', 'Apple' ]
}
df = pd.DataFrame(data, columns = ['group','item'])
df
0 a Apple
1 a Chocolate
2 a Beans
3 a Apple
4 b Beans
5 b Banana
6 b Banana
7 c Chocolate
8 c Banana
9 c Orange
10 c Apple
11 c Apple
如何计算组内成对出现的总数?
我想得到一个table,其中包含组中出现的每个项目组合并获取它们的频率。如果一组下有两个相同的项目,我想保留项目与自身的组合,但只有在与其他项目匹配时才算作一个。
理想情况下,我想获得一个在轴、行和列上都带有项目名称的数据框,并且矩阵的一半具有相应的值。
在一列中包含组合而在另一列中包含值的数据框也可以完美地完成。
上面的例子会翻译成这样:
apple - chocolate 2
apple - apple 2
apple - beans 1
apple - Orange 1
apple - Banana 1
chocolate - Beans 1
beans - banana 1
banana - banana 1
chocolate - banana 1
chocolate - orange 1
banana - orange 1
所以我想我会先使用不重复的组合和计数器,然后再添加匹配自己的项目。原因是为了避免为同一组下的多个项目组合计算多个匹配项。但是,当我尝试这样做时,某些组合会以不同的顺序出现两次,例如苹果 - 巧克力和巧克力 - 苹果。这是我的代码:
from collections import Counter
from itertools import combinations
df = df.groupby('group').filter(lambda g: len(g) > 1).drop_duplicates(subset=['group', 'item'], keep="first")
result = df.groupby(['group']).agg(lambda g: list(set(combinations(g, 2))))
combos = pd.DataFrame(Counter(result.item.sum()).items(), columns=['combos', 'count'])
combos
combos count
0 (Apple, Beans) 1
1 (Apple, Chocolate) 1
2 (Chocolate, Beans) 1
3 (Beans, Banana) 1
4 (Chocolate, Orange) 1
5 (Orange, Apple) 1
6 (Banana, Orange) 1
7 (Banana, Apple) 1
8 (Chocolate, Banana) 1
9 (Chocolate, Apple) 1
请帮帮我!
对您的代码稍作调整即可解决您的问题
## No need to drop to duplicates as you create a set of the combinations, so they won't be counted twice
# df = df.groupby('group').filter(lambda g: len(g) > 1).drop_duplicates(subset=['group', 'item'], keep="first")
## Sorted g, so the problem with tuples that are ordered differently is solved
result = df.groupby(['group']).agg(lambda g: list(set(combinations(sorted(g), 2))))
combos = pd.DataFrame(Counter(result.item.sum()).items(), columns=['combos', 'count'])
combos
combos count
0 (Apple, Beans) 1
1 (Beans, Chocolate) 1
2 (Apple, Apple) 2
3 (Apple, Chocolate) 2
4 (Banana, Banana) 1
5 (Banana, Beans) 1
6 (Apple, Banana) 1
7 (Banana, Orange) 1
8 (Apple, Orange) 1
9 (Chocolate, Orange) 1
10 (Banana, Chocolate) 1
用 ##
您当然可以使用
轻松地在后缀中排序结果combos.sort_values('count', ascending=False)