R data.table:优化(不同)组的行操作速度

R data.table: optimize speed of row operations by (different) groups

所以,我有这个庞大的数据集(可能有数千个条目),我的代码以 data.table 的长格式接收这些数据集,如下所示:

#sample DT
sample_size = 8
DT0 <- data.table(
  DATE = seq.Date(from = as.Date("2020/3/01"), by = "day", length.out = sample_size),
  BANANA = seq(30, by=0.060, length.out = sample_size),
  ORANGE = seq(5, by=0.035, length.out = sample_size),
  APPLE = seq(12, by=0.6, length.out = sample_size),
  LEMON = seq(10, by=0.01, length.out = sample_size),
  GRAPE = seq(0.5, by=0.13, length.out = sample_size)
)

DT <- melt(DT0, 
           id.vars = c("DATE"), 
           variable.name = "FRUIT",
           value.name = "PRICE")
setkeyv(DT, cols=c("FRUIT", "DATE"))

DT 正是我的数据现在的样子:

> DT
          DATE  FRUIT  PRICE
 1: 2020-03-01 BANANA 30.000
 2: 2020-03-02 BANANA 30.060
 3: 2020-03-03 BANANA 30.120
 4: 2020-03-04 BANANA 30.180
 5: 2020-03-05 BANANA 30.240
 6: 2020-03-06 BANANA 30.300
 7: 2020-03-07 BANANA 30.360
 8: 2020-03-08 BANANA 30.420
 9: 2020-03-01 ORANGE  5.000
10: 2020-03-02 ORANGE  5.035
11: 2020-03-03 ORANGE  5.070
12: 2020-03-04 ORANGE  5.105
13: 2020-03-05 ORANGE  5.140
14: 2020-03-06 ORANGE  5.175
15: 2020-03-07 ORANGE  5.210
16: 2020-03-08 ORANGE  5.245
17: 2020-03-01  APPLE 12.000
18: 2020-03-02  APPLE 12.600
19: 2020-03-03  APPLE 13.200
20: 2020-03-04  APPLE 13.800
21: 2020-03-05  APPLE 14.400
22: 2020-03-06  APPLE 15.000
23: 2020-03-07  APPLE 15.600
24: 2020-03-08  APPLE 16.200
25: 2020-03-01  LEMON 10.000
26: 2020-03-02  LEMON 10.010
27: 2020-03-03  LEMON 10.020
28: 2020-03-04  LEMON 10.030
29: 2020-03-05  LEMON 10.040
30: 2020-03-06  LEMON 10.050
31: 2020-03-07  LEMON 10.060
32: 2020-03-08  LEMON 10.070
33: 2020-03-01  GRAPE  0.500
34: 2020-03-02  GRAPE  0.630
35: 2020-03-03  GRAPE  0.760
36: 2020-03-04  GRAPE  0.890
37: 2020-03-05  GRAPE  1.020
38: 2020-03-06  GRAPE  1.150
39: 2020-03-07  GRAPE  1.280
40: 2020-03-08  GRAPE  1.410
          DATE  FRUIT  PRICE

现在,假设我需要在一个新列(“RESULT”)中计算 FRUIT 中每个项目的价格与一个常数的价格之间的差值(或任何其他更复杂的运算)每天指定水果(例如:葡萄)。

只是为了帮助您将想法形象化,RESULT 列将类似于这些操作的结果,对于每一天:

result := PRICE BANANA - PRICE GRAPE
result := PRICE ORANGE - PRICE GRAPE
result := PRICE APPLE - PRICE GRAPE
result := PRICE BANANA - PRICE GRAPE
result := PRICE LEMON - PRICE GRAPE
result := PRICE GRAPE - PRICE GRAPE

经过数小时的反复试验(但仍然不太了解我在做什么),这是我设法做到的:

#my try:
chosen_fruit <- "GRAPE"

setkey(DT, DATE)
DT[DT[FRUIT == chosen_fruit], RESULTS := PRICE - i.PRICE]

> DT
          DATE  FRUIT  PRICE RESULTS
 1: 2020-03-01 BANANA 30.000  29.500
 2: 2020-03-01 ORANGE  5.000   4.500
 3: 2020-03-01  APPLE 12.000  11.500
 4: 2020-03-01  LEMON 10.000   9.500
 5: 2020-03-01  GRAPE  0.500   0.000
 6: 2020-03-02 BANANA 30.060  29.430
 7: 2020-03-02 ORANGE  5.035   4.405
 8: 2020-03-02  APPLE 12.600  11.970
 9: 2020-03-02  LEMON 10.010   9.380
10: 2020-03-02  GRAPE  0.630   0.000
11: 2020-03-03 BANANA 30.120  29.360
12: 2020-03-03 ORANGE  5.070   4.310
13: 2020-03-03  APPLE 13.200  12.440
14: 2020-03-03  LEMON 10.020   9.260
15: 2020-03-03  GRAPE  0.760   0.000
16: 2020-03-04 BANANA 30.180  29.290
17: 2020-03-04 ORANGE  5.105   4.215
18: 2020-03-04  APPLE 13.800  12.910
19: 2020-03-04  LEMON 10.030   9.140
20: 2020-03-04  GRAPE  0.890   0.000
21: 2020-03-05 BANANA 30.240  29.220
22: 2020-03-05 ORANGE  5.140   4.120
23: 2020-03-05  APPLE 14.400  13.380
24: 2020-03-05  LEMON 10.040   9.020
25: 2020-03-05  GRAPE  1.020   0.000
26: 2020-03-06 BANANA 30.300  29.150
27: 2020-03-06 ORANGE  5.175   4.025
28: 2020-03-06  APPLE 15.000  13.850
29: 2020-03-06  LEMON 10.050   8.900
30: 2020-03-06  GRAPE  1.150   0.000
31: 2020-03-07 BANANA 30.360  29.080
32: 2020-03-07 ORANGE  5.210   3.930
33: 2020-03-07  APPLE 15.600  14.320
34: 2020-03-07  LEMON 10.060   8.780
35: 2020-03-07  GRAPE  1.280   0.000
36: 2020-03-08 BANANA 30.420  29.010
37: 2020-03-08 ORANGE  5.245   3.835
38: 2020-03-08  APPLE 16.200  14.790
39: 2020-03-08  LEMON 10.070   8.660
40: 2020-03-08  GRAPE  1.410   0.000
          DATE  FRUIT  PRICE RESULTS

我最终想要的输出:

setkey(DT, FRUIT)

> DT
          DATE  FRUIT  PRICE RESULTS
 1: 2020-03-01 BANANA 30.000  29.500
 2: 2020-03-02 BANANA 30.060  29.430
 3: 2020-03-03 BANANA 30.120  29.360
 4: 2020-03-04 BANANA 30.180  29.290
 5: 2020-03-05 BANANA 30.240  29.220
 6: 2020-03-06 BANANA 30.300  29.150
 7: 2020-03-07 BANANA 30.360  29.080
 8: 2020-03-08 BANANA 30.420  29.010
 9: 2020-03-01 ORANGE  5.000   4.500
10: 2020-03-02 ORANGE  5.035   4.405
11: 2020-03-03 ORANGE  5.070   4.310
12: 2020-03-04 ORANGE  5.105   4.215
13: 2020-03-05 ORANGE  5.140   4.120
14: 2020-03-06 ORANGE  5.175   4.025
15: 2020-03-07 ORANGE  5.210   3.930
16: 2020-03-08 ORANGE  5.245   3.835
17: 2020-03-01  APPLE 12.000  11.500
18: 2020-03-02  APPLE 12.600  11.970
19: 2020-03-03  APPLE 13.200  12.440
20: 2020-03-04  APPLE 13.800  12.910
21: 2020-03-05  APPLE 14.400  13.380
22: 2020-03-06  APPLE 15.000  13.850
23: 2020-03-07  APPLE 15.600  14.320
24: 2020-03-08  APPLE 16.200  14.790
25: 2020-03-01  LEMON 10.000   9.500
26: 2020-03-02  LEMON 10.010   9.380
27: 2020-03-03  LEMON 10.020   9.260
28: 2020-03-04  LEMON 10.030   9.140
29: 2020-03-05  LEMON 10.040   9.020
30: 2020-03-06  LEMON 10.050   8.900
31: 2020-03-07  LEMON 10.060   8.780
32: 2020-03-08  LEMON 10.070   8.660
33: 2020-03-01  GRAPE  0.500   0.000
34: 2020-03-02  GRAPE  0.630   0.000
35: 2020-03-03  GRAPE  0.760   0.000
36: 2020-03-04  GRAPE  0.890   0.000
37: 2020-03-05  GRAPE  1.020   0.000
38: 2020-03-06  GRAPE  1.150   0.000
39: 2020-03-07  GRAPE  1.280   0.000
40: 2020-03-08  GRAPE  1.410   0.000
          DATE  FRUIT  PRICE RESULTS

如您所见,我以某种方式达到了目标。不过好像不太理想。

我现在正在学习 R(和一般编程),所以我对所有这些都非常陌生,尤其是在尽可能优化代码方面(考虑此处的内存限制)。

关于如何改进 speed/performance 操作或更好的方法有什么建议吗? 非常感谢您!

在 OP 的代码中,我们不需要 == 一旦我们 set 键,即第一个 setkey 就足够了,并通过 [ 加入 on =37=] 同时做 PRICEi.PRICE

的减法
setkeyv(DT, cols=c("FRUIT", "DATE"))
DT[DT[.(chosen_fruit)],  RESULTS := PRICE - i.PRICE, on = .(DATE)]

或者另一种选择是按 'DATE' 分组,从相应的 PRICE 中减去 'PRICE',其中 'FRUIT' 是 'GRAPE'

library(data.table)
DT[, RESULTS := PRICE - PRICE[FRUIT == 'GRAPE'], DATE]

-输出

DT
          DATE  FRUIT  PRICE RESULTS
 1: 2020-03-01 BANANA 30.000  29.500
 2: 2020-03-02 BANANA 30.060  29.430
 3: 2020-03-03 BANANA 30.120  29.360
 4: 2020-03-04 BANANA 30.180  29.290
 5: 2020-03-05 BANANA 30.240  29.220
 6: 2020-03-06 BANANA 30.300  29.150
 7: 2020-03-07 BANANA 30.360  29.080
 8: 2020-03-08 BANANA 30.420  29.010
 9: 2020-03-01 ORANGE  5.000   4.500
10: 2020-03-02 ORANGE  5.035   4.405
11: 2020-03-03 ORANGE  5.070   4.310
12: 2020-03-04 ORANGE  5.105   4.215
13: 2020-03-05 ORANGE  5.140   4.120
14: 2020-03-06 ORANGE  5.175   4.025
15: 2020-03-07 ORANGE  5.210   3.930
16: 2020-03-08 ORANGE  5.245   3.835
17: 2020-03-01  APPLE 12.000  11.500
18: 2020-03-02  APPLE 12.600  11.970
19: 2020-03-03  APPLE 13.200  12.440
20: 2020-03-04  APPLE 13.800  12.910
21: 2020-03-05  APPLE 14.400  13.380
22: 2020-03-06  APPLE 15.000  13.850
23: 2020-03-07  APPLE 15.600  14.320
24: 2020-03-08  APPLE 16.200  14.790
25: 2020-03-01  LEMON 10.000   9.500
26: 2020-03-02  LEMON 10.010   9.380
27: 2020-03-03  LEMON 10.020   9.260
28: 2020-03-04  LEMON 10.030   9.140
29: 2020-03-05  LEMON 10.040   9.020
30: 2020-03-06  LEMON 10.050   8.900
31: 2020-03-07  LEMON 10.060   8.780
32: 2020-03-08  LEMON 10.070   8.660
33: 2020-03-01  GRAPE  0.500   0.000
34: 2020-03-02  GRAPE  0.630   0.000
35: 2020-03-03  GRAPE  0.760   0.000
36: 2020-03-04  GRAPE  0.890   0.000
37: 2020-03-05  GRAPE  1.020   0.000
38: 2020-03-06  GRAPE  1.150   0.000
39: 2020-03-07  GRAPE  1.280   0.000
40: 2020-03-08  GRAPE  1.410   0.000

或者另一个选择是 dcast 到 'wide' 格式然后做减法

dt_wide <- dcast(DT, DATE ~ FRUIT, value.var = 'PRICE')
nm1 <- names(dt_wide)[-1]
dt_wide[, (nm1) := lapply(.SD, function(x) x - GRAPE), .SDcols = nm1]

基准

通过在构建输入数据时更改 sample_size 在稍大的数据集上进行测试

sample_size <- 1000000
dim(DT)
#[1] 5000000       3



system.time(DT[DT[.(chosen_fruit)],  RESULTS := PRICE - i.PRICE, on = .(DATE)])
# user  system elapsed 
#  0.287   0.039   0.326 

system.time({     DT[DT[FRUIT == chosen_fruit], RESULTS := PRICE - i.PRICE, on = .(DATE)] })
#  user  system elapsed 
#  0.294   0.006   0.300 

system.time({
  setkey(DT, DATE)
  DT[DT[FRUIT == chosen_fruit], RESULTS := PRICE - i.PRICE]
  setkey(DT, FRUIT)
})
# user  system elapsed 
#  0.431   0.045   0.476 


system.time(DT[, RESULTS := PRICE - PRICE[FRUIT == 'GRAPE'], DATE])
#  user  system elapsed 
#  6.660   0.039   6.665 

system.time({
dt_wide <- dcast(DT, DATE ~ FRUIT, value.var = 'PRICE')
nm1 <- names(dt_wide)[-1]
dt_wide[, (nm1) := lapply(.SD, function(x) x - GRAPE), .SDcols = nm1]

})
# user  system elapsed 
#  0.868   0.060   0.926