过滤嵌套 JSON 结构并获取字段名称作为 Pyspark 中的值

Filter nested JSON structure and get field names as values in Pyspark

我有以下想要在 PySpark 中解析的复杂数据:

records = '[{"segmentMembership":{"ups":{"FF6KCPTR6AQ0836R":{"lastQualificationTime":"2021-01-16 22:05:11.074357","status":"exited"},"QMS3YRT06JDEUM8O":{"lastQualificationTime":"2021-01-16 22:05:11.074357","status":"realized"},"8XH45RT87N6ZV4KQ":{"lastQualificationTime":"2021-01-16 22:05:11.074357","status":"exited"}}},"_aepgdcdevenablement2":{"emailId":{"address":"stuff@someemail.com"},"person":{"name":{"firstName":"Name2"}},"identities":{"customerid":"PH25PEUWOTA7QF93"}}},{"segmentMembership":{"ups":{"FF6KCPTR6AQ0836R":{"lastQualificationTime":"2021-01-16 22:05:11.074457","status":"realized"},"D45TOO8ZUH0B7GY7":{"lastQualificationTime":"2021-01-16 22:05:11.074457","status":"realized"},"QMS3YRT06JDEUM8O":{"lastQualificationTime":"2021-01-16 22:05:11.074457","status":"existing"}}},"_aepgdcdevenablement2":{"emailId":{"address":"stuff4@someemail.com"},"person":{"name":{"firstName":"TestName"}},"identities":{"customerid":"9LAIHVG91GCREE3Z"}}}]'
df = spark.read.json(sc.parallelize([records]))
df.show()
df.printSchema()

我遇到的问题是 segmentMembership 对象。 JSON 对象如下所示:

"segmentMembership": {
      "ups": {
        "FF6KCPTR6AQ0836R": {
          "lastQualificationTime": "2021-01-16 22:05:11.074357",
          "status": "exited"
        },
        "QMS3YRT06JDEUM8O": {
          "lastQualificationTime": "2021-01-16 22:05:11.074357",
          "status": "realized"
        },
        "8XH45RT87N6ZV4KQ": {
          "lastQualificationTime": "2021-01-16 22:05:11.074357",
          "status": "exited"
        }
      }
    }

令人讨厌的是,键值 ("FF6KCPTR6AQ0836R", "QMS3YRT06JDEUM8O", "8XH45RT87N6ZV4KQ") 最终被定义为 pyspark 中的一列。

最后,如果段的状态是“已退出”,我希望得到如下结果。

+--------------------+----------------+---------+------------------+
|address             |customerid      |firstName|segment_id        |
+--------------------+----------------+---------+------------------+
|stuff@someemail.com |PH25PEUWOTA7QF93|Name2    |[8XH45RT87N6ZV4KQ]|
|stuff4@someemail.com|9LAIHVG91GCREE3Z|TestName |[8XH45RT87N6ZV4KQ]|
+--------------------+----------------+---------+------------------+

将数据加载到数据帧后(如上),我尝试了以下操作:

dfx = df.select("_aepgdcdevenablement2.emailId.address", "_aepgdcdevenablement2.identities.customerid", "_aepgdcdevenablement2.person.name.firstName", "segmentMembership.ups")
dfx.show(truncate=False)

seg_list = array(*[lit(k) for k in ["8XH45RT87N6ZV4KQ", "QMS3YRT06JDEUM8O"]])
print(seg_list)

# if v["status"] in ['existing', 'realized']

def confusing_compare(ups, seg_list):
    seg_id_filtered_d = dict((k, ups[k]) for k in seg_list if k in ups)

    # This is the line I am having a problem with.
    # seg_id_status_filtered_d = {key for key, value in seg_id_filtered_d.items() if v["status"] in ['existing', 'realized']}
       
    return list(seg_id_filtered_d)

final_conf_dx_pred = udf(confusing_compare, ArrayType(StringType()))
result_df = dfx.withColumn("segment_id", final_conf_dx_pred(dfx.ups, seg_list)).select("address", "customerid", "firstName", "segment_id")

result_df.show(truncate=False)

我无法检查 dic 值字段中的状态字段。

您实际上可以在不使用 UDF 的情况下做到这一点。在这里,我使用模式中存在的所有段名称并过滤掉带有 status = 'exited' 的那些。您可以根据需要的细分和状态对其进行调整。

首先,使用架构字段,获取所有段名称的列表,如下所示:

segment_names = df.select("segmentMembership.ups.*").schema.fieldNames()

然后,通过遍历上面创建的列表并使用 when 函数,您可以创建一个列,该列可以具有 segment_name 作为值或 null,具体取决于 status

active_segments = [
        when(col(f"segmentMembership.ups.{c}.status") != lit("exited"), lit(c)) 
        for c in segment_names
]

最后,添加数组类型的新列segments并使用filter函数从数组中删除空元素(对应状态'exited'):

dfx = df.withColumn("segments", array(*active_segments)) \
        .withColumn("segments", expr("filter(segments, x -> x is not null)")) \
        .select(
        col("_aepgdcdevenablement2.emailId.address"),
        col("_aepgdcdevenablement2.identities.customerid"),
        col("_aepgdcdevenablement2.person.name.firstName"),
        col("segments").alias("segment_id")
    )

dfx.show(truncate=False)

#+--------------------+----------------+---------+------------------------------------------------------+
#|address             |customerid      |firstName|segment_id                                            |
#+--------------------+----------------+---------+------------------------------------------------------+
#|stuff@someemail.com |PH25PEUWOTA7QF93|Name2    |[QMS3YRT06JDEUM8O]                                    |
#|stuff4@someemail.com|9LAIHVG91GCREE3Z|TestName |[D45TOO8ZUH0B7GY7, FF6KCPTR6AQ0836R, QMS3YRT06JDEUM8O]|
#+--------------------+----------------+---------+------------------------------------------------------+