如何在 python 中替换数学方程式中的数据框列?
How to substitute data frame columns in mathematics equations in python?
我对 sympy 有疑问,
我有一个数据框列,必须用公式计算,公式是字符串格式
我正在使用 sympy 它只取一个值而不是系列值
我的代码
import sympy
def eval_eqn(eqn,in_dict):
sub = {sympy.symbols(key):item for key,item in in_dict.items()}
ans = sympy.simplify(eqn).evalf(subs = sub)
return ans
in_dict = {"x": df['bike_count'],"y":df['car_count'],"z":df['flight_count']}
eqn = "x+y+z"
eval_eqn(eqn,in_dict)
当我使用这个时出现错误,说该系列必须归因于 func
。有什么建议吗?
我对您的代码做了一些小改动。以下是更新后的版本。请根据您的需要进行更改。
from sympy import *
import pandas as pd
# initialize list of lists
data = [[10, 15, 14]]
# Create the pandas DataFrame
df = pd.DataFrame(data, columns = ['bike_count', 'car_count','flight_count'])
print(df)
def eval_eqn(eqn,in_dict):
sub = {symbols(key):item for key,item in in_dict.items()}
ans = simplify(eqn).evalf(subs = sub)
return ans
in_dict = {"x": df['bike_count'],"y":df['car_count'],"z":df['flight_count']}
x, y, z = symbols("x y z")
eqn = x+y+z
print(eval_eqn(eqn,in_dict))
编辑了对 df 中多个值的评论
from sympy import *
import pandas as pd
# initialize list of lists
data = [[10, 15, 14],[20, 15, 14]]
# Create the pandas DataFrame
df = pd.DataFrame(data, columns = ['bike_count', 'car_count','flight_count'])
print(df)
def eval_eqn(eqn,in_dict):
sub = {symbols(key):item for key,item in in_dict.items()}
print(sub)
#exit()
ans = simplify(eqn).evalf(subs = sub)
return ans
in_dict = {"x": df['bike_count'],"y":df['car_count'],"z":df['flight_count']}
#print("ddd",in_dict)
x, y, z = symbols("x y z")
eqn = x+y+z
for index, row in df.iterrows():
print({"x": row['bike_count'],"y":row['car_count'],"z":row['flight_count']})
print(eval_eqn(eqn,{"x": row['bike_count'],"y":row['car_count'],"z":row['flight_count']}))
请查看,如果您需要更多帮助,请告诉我。 :)
我对 sympy 有疑问, 我有一个数据框列,必须用公式计算,公式是字符串格式 我正在使用 sympy 它只取一个值而不是系列值 我的代码
import sympy
def eval_eqn(eqn,in_dict):
sub = {sympy.symbols(key):item for key,item in in_dict.items()}
ans = sympy.simplify(eqn).evalf(subs = sub)
return ans
in_dict = {"x": df['bike_count'],"y":df['car_count'],"z":df['flight_count']}
eqn = "x+y+z"
eval_eqn(eqn,in_dict)
当我使用这个时出现错误,说该系列必须归因于 func
。有什么建议吗?
我对您的代码做了一些小改动。以下是更新后的版本。请根据您的需要进行更改。
from sympy import *
import pandas as pd
# initialize list of lists
data = [[10, 15, 14]]
# Create the pandas DataFrame
df = pd.DataFrame(data, columns = ['bike_count', 'car_count','flight_count'])
print(df)
def eval_eqn(eqn,in_dict):
sub = {symbols(key):item for key,item in in_dict.items()}
ans = simplify(eqn).evalf(subs = sub)
return ans
in_dict = {"x": df['bike_count'],"y":df['car_count'],"z":df['flight_count']}
x, y, z = symbols("x y z")
eqn = x+y+z
print(eval_eqn(eqn,in_dict))
编辑了对 df 中多个值的评论
from sympy import *
import pandas as pd
# initialize list of lists
data = [[10, 15, 14],[20, 15, 14]]
# Create the pandas DataFrame
df = pd.DataFrame(data, columns = ['bike_count', 'car_count','flight_count'])
print(df)
def eval_eqn(eqn,in_dict):
sub = {symbols(key):item for key,item in in_dict.items()}
print(sub)
#exit()
ans = simplify(eqn).evalf(subs = sub)
return ans
in_dict = {"x": df['bike_count'],"y":df['car_count'],"z":df['flight_count']}
#print("ddd",in_dict)
x, y, z = symbols("x y z")
eqn = x+y+z
for index, row in df.iterrows():
print({"x": row['bike_count'],"y":row['car_count'],"z":row['flight_count']})
print(eval_eqn(eqn,{"x": row['bike_count'],"y":row['car_count'],"z":row['flight_count']}))
请查看,如果您需要更多帮助,请告诉我。 :)