Forcats 重新排序不适用于 ggplot
Forcats reordering not working for ggplot
我有以下代码为我的数据绘制一个简单的棒棒糖图表:
p <-
data %>% mutate(Activity_Name = fct_reorder(Activity_Name, count)) %>%
ggplot(aes(x = Activity_Name, y = count)) +
geom_segment(aes(
x = Activity_Name,
xend = Activity_Name,
y = 0,
yend = count
),
color = "skyblue") +
geom_point(color = "#F2F7F2",
size = 5,
alpha = 0.6) +
theme_light() +
scale_y_log10() +
coord_flip()
我想按 Activity Name
的计数降序排列。尽管我已将其包含在代码中,但下面的代码会生成以下图表:
[![在此处输入图片描述][1]][1]
我做错了什么,为什么会失败?我的 dput
分享如下:
D放这里
structure(list(Day = c("01-01-2021", "01-01-2021", "01-01-2021",
"01-01-2021", "01-01-2021", "01-01-2021", "01-01-2021", "01-01-2021",
"01-01-2021", "01-01-2021", "01-01-2021", "01-01-2021", "01-01-2021",
"01-01-2021", "01-01-2021", "01-01-2021", "01-01-2021", "01-01-2021",
"01-01-2021", "01-01-2021", "01-01-2021", "01-01-2021", "01-01-2021",
"01-01-2021", "01-02-2021", "01-02-2021", "01-02-2021", "01-02-2021",
"01-02-2021", "01-02-2021", "01-02-2021", "01-02-2021", "01-02-2021",
"01-02-2021", "01-02-2021", "01-02-2021", "01-02-2021", "01-02-2021",
"01-02-2021", "01-02-2021", "01-02-2021", "01-02-2021", "01-02-2021",
"01-02-2021", "01-02-2021", "01-02-2021", "01-02-2021", "01-02-2021",
"01-03-2021", "01-03-2021", "01-03-2021", "01-03-2021", "01-03-2021",
"01-03-2021", "01-03-2021", "01-03-2021", "01-03-2021", "01-03-2021",
"01-03-2021", "01-03-2021", "01-03-2021", "01-03-2021", "01-03-2021",
"01-03-2021", "01-03-2021", "01-03-2021", "01-03-2021", "01-03-2021",
"01-03-2021", "01-03-2021", "01-03-2021", "01-03-2021", "01-04-2021",
"01-04-2021", "01-04-2021", "01-04-2021", "01-04-2021", "01-04-2021",
"01-04-2021", "01-04-2021", "01-04-2021", "01-04-2021", "01-04-2021",
"01-04-2021", "01-04-2021", "01-04-2021", "01-04-2021", "01-04-2021",
"01-04-2021", "01-04-2021", "01-04-2021", "01-04-2021", "01-04-2021",
"01-04-2021", "01-04-2021", "01-04-2021", "01-05-2021", "01-05-2021",
"01-05-2021", "01-05-2021", "01-05-2021", "01-05-2021", "01-05-2021",
"01-05-2021", "01-05-2021", "01-05-2021", "01-05-2021", "01-05-2021",
"01-05-2021", "01-05-2021", "01-05-2021", "01-05-2021", "01-05-2021",
"01-05-2021", "01-05-2021", "01-05-2021", "01-05-2021", "01-05-2021",
"01-05-2021", "01-05-2021", "01-06-2021", "01-06-2021", "01-06-2021",
"01-06-2021", "01-06-2021", "01-06-2021", "01-06-2021", "01-06-2021",
"01-06-2021", "01-06-2021", "01-06-2021", "01-06-2021", "01-06-2021",
"01-06-2021", "01-06-2021", "01-06-2021", "01-06-2021", "01-06-2021",
"01-06-2021", "01-06-2021", "01-06-2021", "01-06-2021", "01-06-2021",
"01-06-2021", "01-07-2021", "01-07-2021", "01-07-2021", "01-07-2021",
"01-07-2021", "01-07-2021", "01-07-2021", "01-07-2021", "01-07-2021",
"01-07-2021", "01-07-2021", "01-07-2021", "01-07-2021", "01-07-2021",
"01-07-2021", "01-07-2021", "01-07-2021", "01-07-2021", "01-07-2021",
"01-07-2021", "01-07-2021", "01-07-2021", "01-07-2021", "01-07-2021",
"01-08-2021", "01-08-2021", "01-08-2021", "01-08-2021", "01-08-2021",
"01-08-2021", "01-08-2021", "01-08-2021", "01-08-2021", "01-08-2021",
"01-08-2021", "01-08-2021", "01-08-2021", "01-08-2021", "01-08-2021",
"01-08-2021", "01-08-2021", "01-08-2021", "01-08-2021", "01-08-2021",
"01-08-2021", "01-08-2021", "01-08-2021", "01-08-2021", "01-09-2021",
"01-09-2021", "01-09-2021", "01-09-2021", "01-09-2021", "01-09-2021",
"01-09-2021", "01-09-2021", "01-09-2021", "01-09-2021", "01-09-2021",
"01-09-2021", "01-09-2021", "01-09-2021", "01-09-2021", "01-09-2021",
"01-09-2021", "01-09-2021", "01-09-2021", "01-09-2021", "01-09-2021",
"01-09-2021", "01-09-2021", "01-09-2021", "01-10-2021", "01-10-2021",
"01-10-2021", "01-10-2021", "01-10-2021", "01-10-2021", "01-10-2021",
"01-10-2021", "01-10-2021", "01-10-2021", "01-10-2021", "01-10-2021",
"01-10-2021", "01-10-2021", "01-10-2021", "01-10-2021", "01-10-2021",
"01-10-2021", "01-10-2021", "01-10-2021", "01-10-2021", "01-10-2021",
"01-10-2021", "01-10-2021", "01-11-2021", "01-11-2021", "01-11-2021",
"01-11-2021", "01-11-2021", "01-11-2021", "01-11-2021", "01-11-2021",
"01-11-2021", "01-11-2021", "01-11-2021", "01-11-2021", "01-11-2021",
"01-11-2021", "01-11-2021", "01-11-2021", "01-11-2021", "01-11-2021",
"01-11-2021", "01-11-2021", "01-11-2021", "01-11-2021", "01-11-2021",
"01-11-2021", "01-12-2021", "01-12-2021", "01-12-2021", "01-12-2021",
"01-12-2021", "01-12-2021", "01-12-2021", "01-12-2021", "01-12-2021",
"01-12-2021", "01-12-2021", "01-12-2021", "01-12-2021", "01-12-2021",
"01-12-2021", "01-12-2021", "01-12-2021", "01-12-2021", "01-12-2021",
"01-12-2021", "01-12-2021", "01-12-2021", "01-12-2021", "01-12-2021",
"01-13-2021", "01-13-2021", "01-13-2021", "01-13-2021", "01-13-2021",
"01-13-2021", "01-13-2021", "01-13-2021", "01-13-2021", "01-13-2021",
"01-13-2021", "01-13-2021", "01-13-2021", "01-13-2021", "01-13-2021",
"01-13-2021", "01-13-2021", "01-13-2021", "01-13-2021", "01-13-2021",
"01-13-2021", "01-13-2021", "01-13-2021", "01-13-2021", "01-14-2021",
"01-14-2021", "01-14-2021", "01-14-2021", "01-14-2021", "01-14-2021",
"01-14-2021", "01-14-2021", "01-14-2021", "01-14-2021", "01-14-2021",
"01-14-2021", "01-14-2021", "01-14-2021", "01-14-2021", "01-14-2021",
"01-14-2021", "01-14-2021", "01-14-2021", "01-14-2021", "01-14-2021",
"01-14-2021", "01-14-2021", "01-14-2021", "01-15-2021", "01-15-2021",
"01-15-2021", "01-15-2021", "01-15-2021", "01-15-2021", "01-15-2021",
"01-15-2021", "01-15-2021", "01-15-2021", "01-15-2021", "01-15-2021",
"01-15-2021", "01-15-2021", "01-15-2021", "01-15-2021", "01-15-2021",
"01-15-2021", "01-15-2021", "01-15-2021", "01-15-2021", "01-15-2021",
"01-15-2021", "01-15-2021"), Hour = c("00:00", "01:00", "02:00",
"03:00", "04:00", "05:00", "06:00", "07:00", "08:00", "09:00",
"10:00", "11:00", "12:00", "13:00", "14:00", "15:00", "16:00",
"17:00", "18:00", "19:00", "20:00", "21:00", "22:00", "23:00",
"00:00", "01:00", "02:00", "03:00", "04:00", "05:00", "06:00",
"07:00", "08:00", "09:00", "10:00", "11:00", "12:00", "13:00",
"14:00", "15:00", "16:00", "17:00", "18:00", "19:00", "20:00",
"21:00", "22:00", "23:00", "00:00", "01:00", "02:00", "03:00",
"04:00", "05:00", "06:00", "07:00", "08:00", "09:00", "10:00",
"11:00", "12:00", "13:00", "14:00", "15:00", "16:00", "17:00",
"18:00", "19:00", "20:00", "21:00", "22:00", "23:00", "00:00",
"01:00", "02:00", "03:00", "04:00", "05:00", "06:00", "07:00",
"08:00", "09:00", "10:00", "11:00", "12:00", "13:00", "14:00",
"15:00", "16:00", "17:00", "18:00", "19:00", "20:00", "21:00",
"22:00", "23:00", "00:00", "01:00", "02:00", "03:00", "04:00",
"05:00", "06:00", "07:00", "08:00", "09:00", "10:00", "11:00",
"12:00", "13:00", "14:00", "15:00", "16:00", "17:00", "18:00",
"19:00", "20:00", "21:00", "22:00", "23:00", "00:00", "01:00",
"02:00", "03:00", "04:00", "05:00", "06:00", "07:00", "08:00",
"09:00", "10:00", "11:00", "12:00", "13:00", "14:00", "15:00",
"16:00", "17:00", "18:00", "19:00", "20:00", "21:00", "22:00",
"23:00", "00:00", "01:00", "02:00", "03:00", "04:00", "05:00",
"06:00", "07:00", "08:00", "09:00", "10:00", "11:00", "12:00",
"13:00", "14:00", "15:00", "16:00", "17:00", "18:00", "19:00",
"20:00", "21:00", "22:00", "23:00", "00:00", "01:00", "02:00",
"03:00", "04:00", "05:00", "06:00", "07:00", "08:00", "09:00",
"10:00", "11:00", "12:00", "13:00", "14:00", "15:00", "16:00",
"17:00", "18:00", "19:00", "20:00", "21:00", "22:00", "23:00",
"00:00", "01:00", "02:00", "03:00", "04:00", "05:00", "06:00",
"07:00", "08:00", "09:00", "10:00", "11:00", "12:00", "13:00",
"14:00", "15:00", "16:00", "17:00", "18:00", "19:00", "20:00",
"21:00", "22:00", "23:00", "00:00", "01:00", "02:00", "03:00",
"04:00", "05:00", "06:00", "07:00", "08:00", "09:00", "10:00",
"11:00", "12:00", "13:00", "14:00", "15:00", "16:00", "17:00",
"18:00", "19:00", "20:00", "21:00", "22:00", "23:00", "00:00",
"01:00", "02:00", "03:00", "04:00", "05:00", "06:00", "07:00",
"08:00", "09:00", "10:00", "11:00", "12:00", "13:00", "14:00",
"15:00", "16:00", "17:00", "18:00", "19:00", "20:00", "21:00",
"22:00", "23:00", "00:00", "01:00", "02:00", "03:00", "04:00",
"05:00", "06:00", "07:00", "08:00", "09:00", "10:00", "11:00",
"12:00", "13:00", "14:00", "15:00", "16:00", "17:00", "18:00",
"19:00", "20:00", "21:00", "22:00", "23:00", "00:00", "01:00",
"02:00", "03:00", "04:00", "05:00", "06:00", "07:00", "08:00",
"09:00", "10:00", "11:00", "12:00", "13:00", "14:00", "15:00",
"16:00", "17:00", "18:00", "19:00", "20:00", "21:00", "22:00",
"23:00", "00:00", "01:00", "02:00", "03:00", "04:00", "05:00",
"06:00", "07:00", "08:00", "09:00", "10:00", "11:00", "12:00",
"13:00", "14:00", "15:00", "16:00", "17:00", "18:00", "19:00",
"20:00", "21:00", "22:00", "23:00", "00:00", "01:00", "02:00",
"03:00", "04:00", "05:00", "06:00", "07:00", "08:00", "09:00",
"10:00", "11:00", "12:00", "13:00", "14:00", "15:00", "16:00",
"17:00", "18:00", "19:00", "20:00", "21:00", "22:00", "23:00"
), Activity = c("1", "1", "1", "1", "1", "1", "1", "1", "23",
"2", "23", "23", "23", "23", "8", "8", "15", "15", "23", "23",
"23", "2", "23", "23", "1", "1", "1", "1", "1", "1", "1", "10",
"23", "10", "23", "23", "23", "23", "23", "8", "8", "23", "23",
"23", "23", "23", "23", "7", "1", "1", "1", "1", "1", "1", "1",
"1", "1", "23", "23", "23", "23", "23", "23", "8", "4", "4",
"15", "15", "15", "2", "2", "23", "7", "1", "1", "1", "1", "1",
"1", "15", "15", "15", "23", "23", "23", "23", "23", "23", "7.7",
"7.7", "7.7", "7.7", "2", "15", "15", "15", "1", "1", "1", "1",
"1", "1", "1", "15", "15", "15", "23", "23", "23", "23", "23",
"23", "23", "15", "15", "23", "17.1", "17.1", "23", "23", "23",
"4", "4", "1", "1", "1", "1", "15", "15", "23", "23", "23", "23",
"23", "8", "8", "8", "8", "15", "2", "15", "15", "23", "1", "1",
"1", "1", "1", "1", "1", "1", "15", "15", "14", "14", "14", "14",
"14", "11", "11", "11", "11", "15", "15", "15", "15", "15", "1",
"1", "1", "1", "1", "1", "1", "1", "1", "7.5", "7.5", "7.5",
"7.5", "7.5", "7.5", "22", "22", "22", "22", "22", "7.5", "7.5",
"7.5", "7.5", "1", "1", "1", "1", "1", "1", "1", "1", "1", "22",
"22", "7.5", "7.5", "7.5", "7.5", "7.5", "16", "8", "8", "15",
"15", "2", "2", "7.5", "7.5", "1", "1", "1", "1", "1", "1", "1",
"1", "15", "15", "15", "15", "15", "2", "15", "16", "19", "19",
"19", "19", "2", "15", "15", "15", "1", "1", "1", "1", "1", "1",
"1", "1", "1", "5", "5", "16", "16", "16", "1", "1", "1", "1",
"15", "17", "17", "8", "8", "17", "17", "17", "1", "1", "1",
"1", "1", "1", "2", "10", "10", "5", "5", "5", "5", "15", "15",
"23", "23", "23", "23", "23", "23", "16", "1", "1", "1", "1",
"1", "1", "1", "1", "1", "5", "5", "5", "5", "2", "5", "5", "22",
"22", "22", "22", "2", "17", "17", "17", "1", "1", "1", "1",
"1", "1", "1", "19", "19", "19", "19", "19", "15", "2", "1",
"1", "1", "7.5", "7.5", "7.5", "2", "23", "23", "1", "1", "1",
"1", "1", "1", "1", "1", "1", "2", "19", "5", "5", "2", "5",
"5", "5", "5", "16", "16", "7.5", "2", "23", "23", "23"), Activity_Name = structure(c(1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 12L, 10L, 12L, 12L, 12L, 12L, 18L,
18L, 5L, 5L, 12L, 12L, 12L, 10L, 12L, 12L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 2L, 12L, 2L, 12L, 12L, 12L, 12L, 12L, 18L, 18L, 12L,
12L, 12L, 12L, 12L, 12L, 15L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 12L, 12L, 12L, 12L, 12L, 12L, 18L, 13L, 13L, 5L, 5L, 5L,
10L, 10L, 12L, 15L, 1L, 1L, 1L, 1L, 1L, 1L, 5L, 5L, 5L, 12L,
12L, 12L, 12L, 12L, 12L, 17L, 17L, 17L, 17L, 10L, 5L, 5L, 5L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 5L, 5L, 5L, 12L, 12L, 12L, 12L, 12L,
12L, 12L, 5L, 5L, 12L, 8L, 8L, 12L, 12L, 12L, 13L, 13L, 1L, 1L,
1L, 1L, 5L, 5L, 12L, 12L, 12L, 12L, 12L, 18L, 18L, 18L, 18L,
5L, 10L, 5L, 5L, 12L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 5L, 5L,
4L, 4L, 4L, 4L, 4L, 3L, 3L, 3L, 3L, 5L, 5L, 5L, 5L, 5L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 16L, 16L, 16L, 16L, 16L, 16L, 11L,
11L, 11L, 11L, 11L, 16L, 16L, 16L, 16L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 11L, 11L, 16L, 16L, 16L, 16L, 16L, 6L, 18L, 18L,
5L, 5L, 10L, 10L, 16L, 16L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 5L,
5L, 5L, 5L, 5L, 10L, 5L, 6L, 9L, 9L, 9L, 9L, 10L, 5L, 5L, 5L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 14L, 14L, 6L, 6L, 6L, 1L,
1L, 1L, 1L, 5L, 7L, 7L, 18L, 18L, 7L, 7L, 7L, 1L, 1L, 1L, 1L,
1L, 1L, 10L, 2L, 2L, 14L, 14L, 14L, 14L, 5L, 5L, 12L, 12L, 12L,
12L, 12L, 12L, 6L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 14L, 14L,
14L, 14L, 10L, 14L, 14L, 11L, 11L, 11L, 11L, 10L, 7L, 7L, 7L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 9L, 9L, 9L, 9L, 9L, 5L, 10L, 1L,
1L, 1L, 16L, 16L, 16L, 10L, 12L, 12L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 10L, 9L, 14L, 14L, 10L, 14L, 14L, 14L, 14L, 6L, 6L,
16L, 10L, 12L, 12L, 12L), .Label = c("Sleeping", "Internet Browsing",
"IRL Social Time", "Travelling", "Waste/Down Time", "Terrace Time",
"Other Productive Activities", "TV", "Sports & Exercise", "Eating",
"Shopping", "Coding", "Online Meetings", "Studying", "Audiobook",
"Sundaram Playing", "Walking", "Netflix"), class = "factor"),
count = c(122L, 122L, 122L, 122L, 122L, 122L, 122L, 122L,
63L, 18L, 63L, 63L, 63L, 63L, 13L, 13L, 43L, 43L, 63L, 63L,
63L, 18L, 63L, 63L, 122L, 122L, 122L, 122L, 122L, 122L, 122L,
4L, 63L, 4L, 63L, 63L, 63L, 63L, 63L, 13L, 13L, 63L, 63L,
63L, 63L, 63L, 63L, 2L, 122L, 122L, 122L, 122L, 122L, 122L,
122L, 122L, 122L, 63L, 63L, 63L, 63L, 63L, 63L, 13L, 4L,
4L, 43L, 43L, 43L, 18L, 18L, 63L, 2L, 122L, 122L, 122L, 122L,
122L, 122L, 43L, 43L, 43L, 63L, 63L, 63L, 63L, 63L, 63L,
4L, 4L, 4L, 4L, 18L, 43L, 43L, 43L, 122L, 122L, 122L, 122L,
122L, 122L, 122L, 43L, 43L, 43L, 63L, 63L, 63L, 63L, 63L,
63L, 63L, 43L, 43L, 63L, 2L, 2L, 63L, 63L, 63L, 4L, 4L, 122L,
122L, 122L, 122L, 43L, 43L, 63L, 63L, 63L, 63L, 63L, 13L,
13L, 13L, 13L, 43L, 18L, 43L, 43L, 63L, 122L, 122L, 122L,
122L, 122L, 122L, 122L, 122L, 43L, 43L, 5L, 5L, 5L, 5L, 5L,
4L, 4L, 4L, 4L, 43L, 43L, 43L, 43L, 43L, 122L, 122L, 122L,
122L, 122L, 122L, 122L, 122L, 122L, 21L, 21L, 21L, 21L, 21L,
21L, 11L, 11L, 11L, 11L, 11L, 21L, 21L, 21L, 21L, 122L, 122L,
122L, 122L, 122L, 122L, 122L, 122L, 122L, 11L, 11L, 21L,
21L, 21L, 21L, 21L, 8L, 13L, 13L, 43L, 43L, 18L, 18L, 21L,
21L, 122L, 122L, 122L, 122L, 122L, 122L, 122L, 122L, 43L,
43L, 43L, 43L, 43L, 18L, 43L, 8L, 10L, 10L, 10L, 10L, 18L,
43L, 43L, 43L, 122L, 122L, 122L, 122L, 122L, 122L, 122L,
122L, 122L, 18L, 18L, 8L, 8L, 8L, 122L, 122L, 122L, 122L,
43L, 8L, 8L, 13L, 13L, 8L, 8L, 8L, 122L, 122L, 122L, 122L,
122L, 122L, 18L, 4L, 4L, 18L, 18L, 18L, 18L, 43L, 43L, 63L,
63L, 63L, 63L, 63L, 63L, 8L, 122L, 122L, 122L, 122L, 122L,
122L, 122L, 122L, 122L, 18L, 18L, 18L, 18L, 18L, 18L, 18L,
11L, 11L, 11L, 11L, 18L, 8L, 8L, 8L, 122L, 122L, 122L, 122L,
122L, 122L, 122L, 10L, 10L, 10L, 10L, 10L, 43L, 18L, 122L,
122L, 122L, 21L, 21L, 21L, 18L, 63L, 63L, 122L, 122L, 122L,
122L, 122L, 122L, 122L, 122L, 122L, 18L, 10L, 18L, 18L, 18L,
18L, 18L, 18L, 18L, 8L, 8L, 21L, 18L, 63L, 63L, 63L)), row.names = c(NA,
-360L), groups = structure(list(Activity = c("1", "10", "11",
"14", "15", "16", "17", "17.1", "19", "2", "22", "23", "4", "5",
"7", "7.5", "7.7", "8"), .rows = structure(list(c(1L, 2L, 3L,
4L, 5L, 6L, 7L, 8L, 25L, 26L, 27L, 28L, 29L, 30L, 31L, 49L, 50L,
51L, 52L, 53L, 54L, 55L, 56L, 57L, 74L, 75L, 76L, 77L, 78L, 79L,
97L, 98L, 99L, 100L, 101L, 102L, 103L, 124L, 125L, 126L, 127L,
144L, 145L, 146L, 147L, 148L, 149L, 150L, 151L, 168L, 169L, 170L,
171L, 172L, 173L, 174L, 175L, 176L, 192L, 193L, 194L, 195L, 196L,
197L, 198L, 199L, 200L, 217L, 218L, 219L, 220L, 221L, 222L, 223L,
224L, 241L, 242L, 243L, 244L, 245L, 246L, 247L, 248L, 249L, 255L,
256L, 257L, 258L, 267L, 268L, 269L, 270L, 271L, 272L, 289L, 290L,
291L, 292L, 293L, 294L, 295L, 296L, 297L, 313L, 314L, 315L, 316L,
317L, 318L, 319L, 327L, 328L, 329L, 336L, 337L, 338L, 339L, 340L,
341L, 342L, 343L, 344L), c(32L, 34L, 274L, 275L), 159:162, 154:158,
c(17L, 18L, 67L, 68L, 69L, 80L, 81L, 82L, 94L, 95L, 96L,
104L, 105L, 106L, 114L, 115L, 128L, 129L, 139L, 141L, 142L,
152L, 153L, 163L, 164L, 165L, 166L, 167L, 211L, 212L, 225L,
226L, 227L, 228L, 229L, 231L, 238L, 239L, 240L, 259L, 280L,
281L, 325L), c(208L, 232L, 252L, 253L, 254L, 288L, 354L,
355L), c(260L, 261L, 264L, 265L, 266L, 310L, 311L, 312L),
117:118, c(233L, 234L, 235L, 236L, 320L, 321L, 322L, 323L,
324L, 346L), c(10L, 22L, 70L, 71L, 93L, 140L, 213L, 214L,
230L, 237L, 273L, 302L, 309L, 326L, 333L, 345L, 349L, 357L
), c(183L, 184L, 185L, 186L, 187L, 201L, 202L, 305L, 306L,
307L, 308L), c(9L, 11L, 12L, 13L, 14L, 19L, 20L, 21L, 23L,
24L, 33L, 35L, 36L, 37L, 38L, 39L, 42L, 43L, 44L, 45L, 46L,
47L, 58L, 59L, 60L, 61L, 62L, 63L, 72L, 83L, 84L, 85L, 86L,
87L, 88L, 107L, 108L, 109L, 110L, 111L, 112L, 113L, 116L,
119L, 120L, 121L, 130L, 131L, 132L, 133L, 134L, 143L, 282L,
283L, 284L, 285L, 286L, 287L, 334L, 335L, 358L, 359L, 360L
), c(65L, 66L, 122L, 123L), c(250L, 251L, 276L, 277L, 278L,
279L, 298L, 299L, 300L, 301L, 303L, 304L, 347L, 348L, 350L,
351L, 352L, 353L), c(48L, 73L), c(177L, 178L, 179L, 180L,
181L, 182L, 188L, 189L, 190L, 191L, 203L, 204L, 205L, 206L,
207L, 215L, 216L, 330L, 331L, 332L, 356L), 89:92, c(15L,
16L, 40L, 41L, 64L, 135L, 136L, 137L, 138L, 209L, 210L, 262L,
263L)), ptype = integer(0), class = c("vctrs_list_of", "vctrs_vctr",
"list"))), row.names = c(NA, 18L), class = c("tbl_df", "tbl",
"data.frame"), .drop = TRUE), class = c("grouped_df", "tbl_df",
"tbl", "data.frame"))
试试这个。 count的数据类型有问题,改成dataframe可以缓解问题:
#Data
data <- as.data.frame(data)
#Plot
data %>%
arrange(count,Activity_Name) %>%
mutate(Activity_Name=as.character(Activity_Name)) %>%
mutate(Activity_Name=factor(Activity_Name,levels = unique(Activity_Name),
ordered = T)) %>%
ggplot(aes(x = Activity_Name, y = count)) +
geom_segment(aes(
x = Activity_Name,
xend = Activity_Name,
y = 0,
yend = count
),
color = "skyblue") +
geom_point(color = "blue",
size = 5,
alpha = 0.6) +
theme_light() +
scale_y_log10() +
coord_flip()
输出(我改变了可重现图的颜色):
这是因为您的数据是分组的,所以 mutate
中的 fct_reorder
试图在组内而不是整个数据框内工作。只需添加一个 ungroup
它应该是所需的输出
输出的第 2 行显示数据已分组
data
# # A tibble: 360 x 5
# # Groups: Activity [18]
# Day Hour Activity Activity_Name count
# <chr> <chr> <chr> <fct> <int>
# 1 01-01-2021 00:00 1 Sleeping 122
# 2 01-01-2021 01:00 1 Sleeping 122
# 3 01-01-2021 02:00 1 Sleeping 122
# 4 01-01-2021 03:00 1 Sleeping 122
# 5 01-01-2021 04:00 1 Sleeping 122
# 6 01-01-2021 05:00 1 Sleeping 122
# 7 01-01-2021 06:00 1 Sleeping 122
# 8 01-01-2021 07:00 1 Sleeping 122
# 9 01-01-2021 08:00 23 Coding 63
# 10 01-01-2021 09:00 2 Eating 18
# # … with 350 more rows
添加取消分组:
data %>%
ungroup %>%
mutate(Activity_Name = fct_reorder(Activity_Name, count)) %>%
ggplot(aes(x = Activity_Name, y = count)) +
geom_segment(aes(
x = Activity_Name,
xend = Activity_Name,
y = 0,
yend = count
),
color = "skyblue") +
geom_point(color = "#F2F7F2",
size = 5,
alpha = 0.6) +
theme_light() +
scale_y_log10() +
coord_flip()
我有以下代码为我的数据绘制一个简单的棒棒糖图表:
p <-
data %>% mutate(Activity_Name = fct_reorder(Activity_Name, count)) %>%
ggplot(aes(x = Activity_Name, y = count)) +
geom_segment(aes(
x = Activity_Name,
xend = Activity_Name,
y = 0,
yend = count
),
color = "skyblue") +
geom_point(color = "#F2F7F2",
size = 5,
alpha = 0.6) +
theme_light() +
scale_y_log10() +
coord_flip()
我想按 Activity Name
的计数降序排列。尽管我已将其包含在代码中,但下面的代码会生成以下图表:
[![在此处输入图片描述][1]][1]
我做错了什么,为什么会失败?我的 dput
分享如下:
D放这里
structure(list(Day = c("01-01-2021", "01-01-2021", "01-01-2021",
"01-01-2021", "01-01-2021", "01-01-2021", "01-01-2021", "01-01-2021",
"01-01-2021", "01-01-2021", "01-01-2021", "01-01-2021", "01-01-2021",
"01-01-2021", "01-01-2021", "01-01-2021", "01-01-2021", "01-01-2021",
"01-01-2021", "01-01-2021", "01-01-2021", "01-01-2021", "01-01-2021",
"01-01-2021", "01-02-2021", "01-02-2021", "01-02-2021", "01-02-2021",
"01-02-2021", "01-02-2021", "01-02-2021", "01-02-2021", "01-02-2021",
"01-02-2021", "01-02-2021", "01-02-2021", "01-02-2021", "01-02-2021",
"01-02-2021", "01-02-2021", "01-02-2021", "01-02-2021", "01-02-2021",
"01-02-2021", "01-02-2021", "01-02-2021", "01-02-2021", "01-02-2021",
"01-03-2021", "01-03-2021", "01-03-2021", "01-03-2021", "01-03-2021",
"01-03-2021", "01-03-2021", "01-03-2021", "01-03-2021", "01-03-2021",
"01-03-2021", "01-03-2021", "01-03-2021", "01-03-2021", "01-03-2021",
"01-03-2021", "01-03-2021", "01-03-2021", "01-03-2021", "01-03-2021",
"01-03-2021", "01-03-2021", "01-03-2021", "01-03-2021", "01-04-2021",
"01-04-2021", "01-04-2021", "01-04-2021", "01-04-2021", "01-04-2021",
"01-04-2021", "01-04-2021", "01-04-2021", "01-04-2021", "01-04-2021",
"01-04-2021", "01-04-2021", "01-04-2021", "01-04-2021", "01-04-2021",
"01-04-2021", "01-04-2021", "01-04-2021", "01-04-2021", "01-04-2021",
"01-04-2021", "01-04-2021", "01-04-2021", "01-05-2021", "01-05-2021",
"01-05-2021", "01-05-2021", "01-05-2021", "01-05-2021", "01-05-2021",
"01-05-2021", "01-05-2021", "01-05-2021", "01-05-2021", "01-05-2021",
"01-05-2021", "01-05-2021", "01-05-2021", "01-05-2021", "01-05-2021",
"01-05-2021", "01-05-2021", "01-05-2021", "01-05-2021", "01-05-2021",
"01-05-2021", "01-05-2021", "01-06-2021", "01-06-2021", "01-06-2021",
"01-06-2021", "01-06-2021", "01-06-2021", "01-06-2021", "01-06-2021",
"01-06-2021", "01-06-2021", "01-06-2021", "01-06-2021", "01-06-2021",
"01-06-2021", "01-06-2021", "01-06-2021", "01-06-2021", "01-06-2021",
"01-06-2021", "01-06-2021", "01-06-2021", "01-06-2021", "01-06-2021",
"01-06-2021", "01-07-2021", "01-07-2021", "01-07-2021", "01-07-2021",
"01-07-2021", "01-07-2021", "01-07-2021", "01-07-2021", "01-07-2021",
"01-07-2021", "01-07-2021", "01-07-2021", "01-07-2021", "01-07-2021",
"01-07-2021", "01-07-2021", "01-07-2021", "01-07-2021", "01-07-2021",
"01-07-2021", "01-07-2021", "01-07-2021", "01-07-2021", "01-07-2021",
"01-08-2021", "01-08-2021", "01-08-2021", "01-08-2021", "01-08-2021",
"01-08-2021", "01-08-2021", "01-08-2021", "01-08-2021", "01-08-2021",
"01-08-2021", "01-08-2021", "01-08-2021", "01-08-2021", "01-08-2021",
"01-08-2021", "01-08-2021", "01-08-2021", "01-08-2021", "01-08-2021",
"01-08-2021", "01-08-2021", "01-08-2021", "01-08-2021", "01-09-2021",
"01-09-2021", "01-09-2021", "01-09-2021", "01-09-2021", "01-09-2021",
"01-09-2021", "01-09-2021", "01-09-2021", "01-09-2021", "01-09-2021",
"01-09-2021", "01-09-2021", "01-09-2021", "01-09-2021", "01-09-2021",
"01-09-2021", "01-09-2021", "01-09-2021", "01-09-2021", "01-09-2021",
"01-09-2021", "01-09-2021", "01-09-2021", "01-10-2021", "01-10-2021",
"01-10-2021", "01-10-2021", "01-10-2021", "01-10-2021", "01-10-2021",
"01-10-2021", "01-10-2021", "01-10-2021", "01-10-2021", "01-10-2021",
"01-10-2021", "01-10-2021", "01-10-2021", "01-10-2021", "01-10-2021",
"01-10-2021", "01-10-2021", "01-10-2021", "01-10-2021", "01-10-2021",
"01-10-2021", "01-10-2021", "01-11-2021", "01-11-2021", "01-11-2021",
"01-11-2021", "01-11-2021", "01-11-2021", "01-11-2021", "01-11-2021",
"01-11-2021", "01-11-2021", "01-11-2021", "01-11-2021", "01-11-2021",
"01-11-2021", "01-11-2021", "01-11-2021", "01-11-2021", "01-11-2021",
"01-11-2021", "01-11-2021", "01-11-2021", "01-11-2021", "01-11-2021",
"01-11-2021", "01-12-2021", "01-12-2021", "01-12-2021", "01-12-2021",
"01-12-2021", "01-12-2021", "01-12-2021", "01-12-2021", "01-12-2021",
"01-12-2021", "01-12-2021", "01-12-2021", "01-12-2021", "01-12-2021",
"01-12-2021", "01-12-2021", "01-12-2021", "01-12-2021", "01-12-2021",
"01-12-2021", "01-12-2021", "01-12-2021", "01-12-2021", "01-12-2021",
"01-13-2021", "01-13-2021", "01-13-2021", "01-13-2021", "01-13-2021",
"01-13-2021", "01-13-2021", "01-13-2021", "01-13-2021", "01-13-2021",
"01-13-2021", "01-13-2021", "01-13-2021", "01-13-2021", "01-13-2021",
"01-13-2021", "01-13-2021", "01-13-2021", "01-13-2021", "01-13-2021",
"01-13-2021", "01-13-2021", "01-13-2021", "01-13-2021", "01-14-2021",
"01-14-2021", "01-14-2021", "01-14-2021", "01-14-2021", "01-14-2021",
"01-14-2021", "01-14-2021", "01-14-2021", "01-14-2021", "01-14-2021",
"01-14-2021", "01-14-2021", "01-14-2021", "01-14-2021", "01-14-2021",
"01-14-2021", "01-14-2021", "01-14-2021", "01-14-2021", "01-14-2021",
"01-14-2021", "01-14-2021", "01-14-2021", "01-15-2021", "01-15-2021",
"01-15-2021", "01-15-2021", "01-15-2021", "01-15-2021", "01-15-2021",
"01-15-2021", "01-15-2021", "01-15-2021", "01-15-2021", "01-15-2021",
"01-15-2021", "01-15-2021", "01-15-2021", "01-15-2021", "01-15-2021",
"01-15-2021", "01-15-2021", "01-15-2021", "01-15-2021", "01-15-2021",
"01-15-2021", "01-15-2021"), Hour = c("00:00", "01:00", "02:00",
"03:00", "04:00", "05:00", "06:00", "07:00", "08:00", "09:00",
"10:00", "11:00", "12:00", "13:00", "14:00", "15:00", "16:00",
"17:00", "18:00", "19:00", "20:00", "21:00", "22:00", "23:00",
"00:00", "01:00", "02:00", "03:00", "04:00", "05:00", "06:00",
"07:00", "08:00", "09:00", "10:00", "11:00", "12:00", "13:00",
"14:00", "15:00", "16:00", "17:00", "18:00", "19:00", "20:00",
"21:00", "22:00", "23:00", "00:00", "01:00", "02:00", "03:00",
"04:00", "05:00", "06:00", "07:00", "08:00", "09:00", "10:00",
"11:00", "12:00", "13:00", "14:00", "15:00", "16:00", "17:00",
"18:00", "19:00", "20:00", "21:00", "22:00", "23:00", "00:00",
"01:00", "02:00", "03:00", "04:00", "05:00", "06:00", "07:00",
"08:00", "09:00", "10:00", "11:00", "12:00", "13:00", "14:00",
"15:00", "16:00", "17:00", "18:00", "19:00", "20:00", "21:00",
"22:00", "23:00", "00:00", "01:00", "02:00", "03:00", "04:00",
"05:00", "06:00", "07:00", "08:00", "09:00", "10:00", "11:00",
"12:00", "13:00", "14:00", "15:00", "16:00", "17:00", "18:00",
"19:00", "20:00", "21:00", "22:00", "23:00", "00:00", "01:00",
"02:00", "03:00", "04:00", "05:00", "06:00", "07:00", "08:00",
"09:00", "10:00", "11:00", "12:00", "13:00", "14:00", "15:00",
"16:00", "17:00", "18:00", "19:00", "20:00", "21:00", "22:00",
"23:00", "00:00", "01:00", "02:00", "03:00", "04:00", "05:00",
"06:00", "07:00", "08:00", "09:00", "10:00", "11:00", "12:00",
"13:00", "14:00", "15:00", "16:00", "17:00", "18:00", "19:00",
"20:00", "21:00", "22:00", "23:00", "00:00", "01:00", "02:00",
"03:00", "04:00", "05:00", "06:00", "07:00", "08:00", "09:00",
"10:00", "11:00", "12:00", "13:00", "14:00", "15:00", "16:00",
"17:00", "18:00", "19:00", "20:00", "21:00", "22:00", "23:00",
"00:00", "01:00", "02:00", "03:00", "04:00", "05:00", "06:00",
"07:00", "08:00", "09:00", "10:00", "11:00", "12:00", "13:00",
"14:00", "15:00", "16:00", "17:00", "18:00", "19:00", "20:00",
"21:00", "22:00", "23:00", "00:00", "01:00", "02:00", "03:00",
"04:00", "05:00", "06:00", "07:00", "08:00", "09:00", "10:00",
"11:00", "12:00", "13:00", "14:00", "15:00", "16:00", "17:00",
"18:00", "19:00", "20:00", "21:00", "22:00", "23:00", "00:00",
"01:00", "02:00", "03:00", "04:00", "05:00", "06:00", "07:00",
"08:00", "09:00", "10:00", "11:00", "12:00", "13:00", "14:00",
"15:00", "16:00", "17:00", "18:00", "19:00", "20:00", "21:00",
"22:00", "23:00", "00:00", "01:00", "02:00", "03:00", "04:00",
"05:00", "06:00", "07:00", "08:00", "09:00", "10:00", "11:00",
"12:00", "13:00", "14:00", "15:00", "16:00", "17:00", "18:00",
"19:00", "20:00", "21:00", "22:00", "23:00", "00:00", "01:00",
"02:00", "03:00", "04:00", "05:00", "06:00", "07:00", "08:00",
"09:00", "10:00", "11:00", "12:00", "13:00", "14:00", "15:00",
"16:00", "17:00", "18:00", "19:00", "20:00", "21:00", "22:00",
"23:00", "00:00", "01:00", "02:00", "03:00", "04:00", "05:00",
"06:00", "07:00", "08:00", "09:00", "10:00", "11:00", "12:00",
"13:00", "14:00", "15:00", "16:00", "17:00", "18:00", "19:00",
"20:00", "21:00", "22:00", "23:00", "00:00", "01:00", "02:00",
"03:00", "04:00", "05:00", "06:00", "07:00", "08:00", "09:00",
"10:00", "11:00", "12:00", "13:00", "14:00", "15:00", "16:00",
"17:00", "18:00", "19:00", "20:00", "21:00", "22:00", "23:00"
), Activity = c("1", "1", "1", "1", "1", "1", "1", "1", "23",
"2", "23", "23", "23", "23", "8", "8", "15", "15", "23", "23",
"23", "2", "23", "23", "1", "1", "1", "1", "1", "1", "1", "10",
"23", "10", "23", "23", "23", "23", "23", "8", "8", "23", "23",
"23", "23", "23", "23", "7", "1", "1", "1", "1", "1", "1", "1",
"1", "1", "23", "23", "23", "23", "23", "23", "8", "4", "4",
"15", "15", "15", "2", "2", "23", "7", "1", "1", "1", "1", "1",
"1", "15", "15", "15", "23", "23", "23", "23", "23", "23", "7.7",
"7.7", "7.7", "7.7", "2", "15", "15", "15", "1", "1", "1", "1",
"1", "1", "1", "15", "15", "15", "23", "23", "23", "23", "23",
"23", "23", "15", "15", "23", "17.1", "17.1", "23", "23", "23",
"4", "4", "1", "1", "1", "1", "15", "15", "23", "23", "23", "23",
"23", "8", "8", "8", "8", "15", "2", "15", "15", "23", "1", "1",
"1", "1", "1", "1", "1", "1", "15", "15", "14", "14", "14", "14",
"14", "11", "11", "11", "11", "15", "15", "15", "15", "15", "1",
"1", "1", "1", "1", "1", "1", "1", "1", "7.5", "7.5", "7.5",
"7.5", "7.5", "7.5", "22", "22", "22", "22", "22", "7.5", "7.5",
"7.5", "7.5", "1", "1", "1", "1", "1", "1", "1", "1", "1", "22",
"22", "7.5", "7.5", "7.5", "7.5", "7.5", "16", "8", "8", "15",
"15", "2", "2", "7.5", "7.5", "1", "1", "1", "1", "1", "1", "1",
"1", "15", "15", "15", "15", "15", "2", "15", "16", "19", "19",
"19", "19", "2", "15", "15", "15", "1", "1", "1", "1", "1", "1",
"1", "1", "1", "5", "5", "16", "16", "16", "1", "1", "1", "1",
"15", "17", "17", "8", "8", "17", "17", "17", "1", "1", "1",
"1", "1", "1", "2", "10", "10", "5", "5", "5", "5", "15", "15",
"23", "23", "23", "23", "23", "23", "16", "1", "1", "1", "1",
"1", "1", "1", "1", "1", "5", "5", "5", "5", "2", "5", "5", "22",
"22", "22", "22", "2", "17", "17", "17", "1", "1", "1", "1",
"1", "1", "1", "19", "19", "19", "19", "19", "15", "2", "1",
"1", "1", "7.5", "7.5", "7.5", "2", "23", "23", "1", "1", "1",
"1", "1", "1", "1", "1", "1", "2", "19", "5", "5", "2", "5",
"5", "5", "5", "16", "16", "7.5", "2", "23", "23", "23"), Activity_Name = structure(c(1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 12L, 10L, 12L, 12L, 12L, 12L, 18L,
18L, 5L, 5L, 12L, 12L, 12L, 10L, 12L, 12L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 2L, 12L, 2L, 12L, 12L, 12L, 12L, 12L, 18L, 18L, 12L,
12L, 12L, 12L, 12L, 12L, 15L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 12L, 12L, 12L, 12L, 12L, 12L, 18L, 13L, 13L, 5L, 5L, 5L,
10L, 10L, 12L, 15L, 1L, 1L, 1L, 1L, 1L, 1L, 5L, 5L, 5L, 12L,
12L, 12L, 12L, 12L, 12L, 17L, 17L, 17L, 17L, 10L, 5L, 5L, 5L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 5L, 5L, 5L, 12L, 12L, 12L, 12L, 12L,
12L, 12L, 5L, 5L, 12L, 8L, 8L, 12L, 12L, 12L, 13L, 13L, 1L, 1L,
1L, 1L, 5L, 5L, 12L, 12L, 12L, 12L, 12L, 18L, 18L, 18L, 18L,
5L, 10L, 5L, 5L, 12L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 5L, 5L,
4L, 4L, 4L, 4L, 4L, 3L, 3L, 3L, 3L, 5L, 5L, 5L, 5L, 5L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 16L, 16L, 16L, 16L, 16L, 16L, 11L,
11L, 11L, 11L, 11L, 16L, 16L, 16L, 16L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 11L, 11L, 16L, 16L, 16L, 16L, 16L, 6L, 18L, 18L,
5L, 5L, 10L, 10L, 16L, 16L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 5L,
5L, 5L, 5L, 5L, 10L, 5L, 6L, 9L, 9L, 9L, 9L, 10L, 5L, 5L, 5L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 14L, 14L, 6L, 6L, 6L, 1L,
1L, 1L, 1L, 5L, 7L, 7L, 18L, 18L, 7L, 7L, 7L, 1L, 1L, 1L, 1L,
1L, 1L, 10L, 2L, 2L, 14L, 14L, 14L, 14L, 5L, 5L, 12L, 12L, 12L,
12L, 12L, 12L, 6L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 14L, 14L,
14L, 14L, 10L, 14L, 14L, 11L, 11L, 11L, 11L, 10L, 7L, 7L, 7L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 9L, 9L, 9L, 9L, 9L, 5L, 10L, 1L,
1L, 1L, 16L, 16L, 16L, 10L, 12L, 12L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 10L, 9L, 14L, 14L, 10L, 14L, 14L, 14L, 14L, 6L, 6L,
16L, 10L, 12L, 12L, 12L), .Label = c("Sleeping", "Internet Browsing",
"IRL Social Time", "Travelling", "Waste/Down Time", "Terrace Time",
"Other Productive Activities", "TV", "Sports & Exercise", "Eating",
"Shopping", "Coding", "Online Meetings", "Studying", "Audiobook",
"Sundaram Playing", "Walking", "Netflix"), class = "factor"),
count = c(122L, 122L, 122L, 122L, 122L, 122L, 122L, 122L,
63L, 18L, 63L, 63L, 63L, 63L, 13L, 13L, 43L, 43L, 63L, 63L,
63L, 18L, 63L, 63L, 122L, 122L, 122L, 122L, 122L, 122L, 122L,
4L, 63L, 4L, 63L, 63L, 63L, 63L, 63L, 13L, 13L, 63L, 63L,
63L, 63L, 63L, 63L, 2L, 122L, 122L, 122L, 122L, 122L, 122L,
122L, 122L, 122L, 63L, 63L, 63L, 63L, 63L, 63L, 13L, 4L,
4L, 43L, 43L, 43L, 18L, 18L, 63L, 2L, 122L, 122L, 122L, 122L,
122L, 122L, 43L, 43L, 43L, 63L, 63L, 63L, 63L, 63L, 63L,
4L, 4L, 4L, 4L, 18L, 43L, 43L, 43L, 122L, 122L, 122L, 122L,
122L, 122L, 122L, 43L, 43L, 43L, 63L, 63L, 63L, 63L, 63L,
63L, 63L, 43L, 43L, 63L, 2L, 2L, 63L, 63L, 63L, 4L, 4L, 122L,
122L, 122L, 122L, 43L, 43L, 63L, 63L, 63L, 63L, 63L, 13L,
13L, 13L, 13L, 43L, 18L, 43L, 43L, 63L, 122L, 122L, 122L,
122L, 122L, 122L, 122L, 122L, 43L, 43L, 5L, 5L, 5L, 5L, 5L,
4L, 4L, 4L, 4L, 43L, 43L, 43L, 43L, 43L, 122L, 122L, 122L,
122L, 122L, 122L, 122L, 122L, 122L, 21L, 21L, 21L, 21L, 21L,
21L, 11L, 11L, 11L, 11L, 11L, 21L, 21L, 21L, 21L, 122L, 122L,
122L, 122L, 122L, 122L, 122L, 122L, 122L, 11L, 11L, 21L,
21L, 21L, 21L, 21L, 8L, 13L, 13L, 43L, 43L, 18L, 18L, 21L,
21L, 122L, 122L, 122L, 122L, 122L, 122L, 122L, 122L, 43L,
43L, 43L, 43L, 43L, 18L, 43L, 8L, 10L, 10L, 10L, 10L, 18L,
43L, 43L, 43L, 122L, 122L, 122L, 122L, 122L, 122L, 122L,
122L, 122L, 18L, 18L, 8L, 8L, 8L, 122L, 122L, 122L, 122L,
43L, 8L, 8L, 13L, 13L, 8L, 8L, 8L, 122L, 122L, 122L, 122L,
122L, 122L, 18L, 4L, 4L, 18L, 18L, 18L, 18L, 43L, 43L, 63L,
63L, 63L, 63L, 63L, 63L, 8L, 122L, 122L, 122L, 122L, 122L,
122L, 122L, 122L, 122L, 18L, 18L, 18L, 18L, 18L, 18L, 18L,
11L, 11L, 11L, 11L, 18L, 8L, 8L, 8L, 122L, 122L, 122L, 122L,
122L, 122L, 122L, 10L, 10L, 10L, 10L, 10L, 43L, 18L, 122L,
122L, 122L, 21L, 21L, 21L, 18L, 63L, 63L, 122L, 122L, 122L,
122L, 122L, 122L, 122L, 122L, 122L, 18L, 10L, 18L, 18L, 18L,
18L, 18L, 18L, 18L, 8L, 8L, 21L, 18L, 63L, 63L, 63L)), row.names = c(NA,
-360L), groups = structure(list(Activity = c("1", "10", "11",
"14", "15", "16", "17", "17.1", "19", "2", "22", "23", "4", "5",
"7", "7.5", "7.7", "8"), .rows = structure(list(c(1L, 2L, 3L,
4L, 5L, 6L, 7L, 8L, 25L, 26L, 27L, 28L, 29L, 30L, 31L, 49L, 50L,
51L, 52L, 53L, 54L, 55L, 56L, 57L, 74L, 75L, 76L, 77L, 78L, 79L,
97L, 98L, 99L, 100L, 101L, 102L, 103L, 124L, 125L, 126L, 127L,
144L, 145L, 146L, 147L, 148L, 149L, 150L, 151L, 168L, 169L, 170L,
171L, 172L, 173L, 174L, 175L, 176L, 192L, 193L, 194L, 195L, 196L,
197L, 198L, 199L, 200L, 217L, 218L, 219L, 220L, 221L, 222L, 223L,
224L, 241L, 242L, 243L, 244L, 245L, 246L, 247L, 248L, 249L, 255L,
256L, 257L, 258L, 267L, 268L, 269L, 270L, 271L, 272L, 289L, 290L,
291L, 292L, 293L, 294L, 295L, 296L, 297L, 313L, 314L, 315L, 316L,
317L, 318L, 319L, 327L, 328L, 329L, 336L, 337L, 338L, 339L, 340L,
341L, 342L, 343L, 344L), c(32L, 34L, 274L, 275L), 159:162, 154:158,
c(17L, 18L, 67L, 68L, 69L, 80L, 81L, 82L, 94L, 95L, 96L,
104L, 105L, 106L, 114L, 115L, 128L, 129L, 139L, 141L, 142L,
152L, 153L, 163L, 164L, 165L, 166L, 167L, 211L, 212L, 225L,
226L, 227L, 228L, 229L, 231L, 238L, 239L, 240L, 259L, 280L,
281L, 325L), c(208L, 232L, 252L, 253L, 254L, 288L, 354L,
355L), c(260L, 261L, 264L, 265L, 266L, 310L, 311L, 312L),
117:118, c(233L, 234L, 235L, 236L, 320L, 321L, 322L, 323L,
324L, 346L), c(10L, 22L, 70L, 71L, 93L, 140L, 213L, 214L,
230L, 237L, 273L, 302L, 309L, 326L, 333L, 345L, 349L, 357L
), c(183L, 184L, 185L, 186L, 187L, 201L, 202L, 305L, 306L,
307L, 308L), c(9L, 11L, 12L, 13L, 14L, 19L, 20L, 21L, 23L,
24L, 33L, 35L, 36L, 37L, 38L, 39L, 42L, 43L, 44L, 45L, 46L,
47L, 58L, 59L, 60L, 61L, 62L, 63L, 72L, 83L, 84L, 85L, 86L,
87L, 88L, 107L, 108L, 109L, 110L, 111L, 112L, 113L, 116L,
119L, 120L, 121L, 130L, 131L, 132L, 133L, 134L, 143L, 282L,
283L, 284L, 285L, 286L, 287L, 334L, 335L, 358L, 359L, 360L
), c(65L, 66L, 122L, 123L), c(250L, 251L, 276L, 277L, 278L,
279L, 298L, 299L, 300L, 301L, 303L, 304L, 347L, 348L, 350L,
351L, 352L, 353L), c(48L, 73L), c(177L, 178L, 179L, 180L,
181L, 182L, 188L, 189L, 190L, 191L, 203L, 204L, 205L, 206L,
207L, 215L, 216L, 330L, 331L, 332L, 356L), 89:92, c(15L,
16L, 40L, 41L, 64L, 135L, 136L, 137L, 138L, 209L, 210L, 262L,
263L)), ptype = integer(0), class = c("vctrs_list_of", "vctrs_vctr",
"list"))), row.names = c(NA, 18L), class = c("tbl_df", "tbl",
"data.frame"), .drop = TRUE), class = c("grouped_df", "tbl_df",
"tbl", "data.frame"))
试试这个。 count的数据类型有问题,改成dataframe可以缓解问题:
#Data
data <- as.data.frame(data)
#Plot
data %>%
arrange(count,Activity_Name) %>%
mutate(Activity_Name=as.character(Activity_Name)) %>%
mutate(Activity_Name=factor(Activity_Name,levels = unique(Activity_Name),
ordered = T)) %>%
ggplot(aes(x = Activity_Name, y = count)) +
geom_segment(aes(
x = Activity_Name,
xend = Activity_Name,
y = 0,
yend = count
),
color = "skyblue") +
geom_point(color = "blue",
size = 5,
alpha = 0.6) +
theme_light() +
scale_y_log10() +
coord_flip()
输出(我改变了可重现图的颜色):
这是因为您的数据是分组的,所以 mutate
中的 fct_reorder
试图在组内而不是整个数据框内工作。只需添加一个 ungroup
它应该是所需的输出
输出的第 2 行显示数据已分组
data
# # A tibble: 360 x 5
# # Groups: Activity [18]
# Day Hour Activity Activity_Name count
# <chr> <chr> <chr> <fct> <int>
# 1 01-01-2021 00:00 1 Sleeping 122
# 2 01-01-2021 01:00 1 Sleeping 122
# 3 01-01-2021 02:00 1 Sleeping 122
# 4 01-01-2021 03:00 1 Sleeping 122
# 5 01-01-2021 04:00 1 Sleeping 122
# 6 01-01-2021 05:00 1 Sleeping 122
# 7 01-01-2021 06:00 1 Sleeping 122
# 8 01-01-2021 07:00 1 Sleeping 122
# 9 01-01-2021 08:00 23 Coding 63
# 10 01-01-2021 09:00 2 Eating 18
# # … with 350 more rows
添加取消分组:
data %>%
ungroup %>%
mutate(Activity_Name = fct_reorder(Activity_Name, count)) %>%
ggplot(aes(x = Activity_Name, y = count)) +
geom_segment(aes(
x = Activity_Name,
xend = Activity_Name,
y = 0,
yend = count
),
color = "skyblue") +
geom_point(color = "#F2F7F2",
size = 5,
alpha = 0.6) +
theme_light() +
scale_y_log10() +
coord_flip()