如何计算 groupby 列的百分比并按降序排序?

How can I calculate percentage of a groupby column and sort it by descending order?

问题:如何计算 groupby 列的百分比并按降序排序?

期望的输出:

country            count     percentage
United States      2555        45%
India               923        12%
United Kingdom      397        4%
Japan               226        3%
South Korea         183        2% 

我做了一些研究,查看了 Pandas 文档,查看了 Whosebug 上的其他问题 运气不好。

我尝试了以下方法:

#1 尝试:

Df2 = df.groupby('country')['show_id'].count().nlargest()
df3 = df2.groupby(level=0).apply(lambda x: x/x.sum() * 100)

输出:

director
A. L. Vijay            100.0
A. Raajdheep           100.0
A. Salaam              100.0
A.R. Murugadoss        100.0
Aadish Keluskar        100.0
...
Çagan Irmak            100.0
Ísold Uggadóttir       100.0
Óskar Thór Axelsson    100.0
Ömer Faruk Sorak       100.0
Şenol Sönmez           100.0

Name: show_id, Length: 4049, dtype: float64

#2 尝试:

df2 = df.groupby('country')['show_id'].count()
df2['percentage'] = df2['show_id']/6000

输出:

KeyError: 'show_id'

数据集样本:

import pandas as pd
df = pd.DataFrame({
'show_id':['81145628','80117401','70234439'],
'type':['Movie','Movie','TV Show'],
'title':['Norm of the North: King Sized Adventure',
'Jandino: Whatever it Takes',
'Transformers Prime'],
'director':['Richard Finn, Tim Maltby',NaN,NaN],
'cast':['Alan Marriott, Andrew Toth, Brian Dobson',
'Jandino Asporaat','Peter Cullen, Sumalee Montano, Frank Welker'], 
'country':['United States, India, South Korea, China',
'United Kingdom','United States'], 
'date_added':['September 9, 2019',
'September 9, 2016',
'September 8, 2018'],
'release_year':['2019','2016','2013'],
'rating':['TV-PG','TV-MA','TV-Y7-FV'],
'duration':['90 min','94 min','1 Season'],
'listed_in':['Children & Family Movies, Comedies',
'Stand-Up Comedy','Kids TV'],
'description':['Before planning an awesome wedding for his',
'Jandino Asporaat riffs on the challenges of ra',
'With the help of three human allies, the Autob']})

这不解决“国家”字段中有多个国家的行,但下面的行应该适用于问题的其他部分:

创建初始数据框:

df = pd.DataFrame({
'show_id':['81145628','80117401','70234439'],
'type':['Movie','Movie','TV Show'],
'title':['Norm of the North: King Sized Adventure',
'Jandino: Whatever it Takes',
'Transformers Prime'],
'director':['Richard Finn, Tim Maltby',0,0],
'cast':['Alan Marriott, Andrew Toth, Brian Dobson',
'Jandino Asporaat','Peter Cullen, Sumalee Montano, Frank Welker'], 
'country':['United States, India, South Korea, China',
'United Kingdom','United States'], 
'date_added':['September 9, 2019',
'September 9, 2016',
'September 8, 2018'],
'release_year':['2019','2016','2013'],
'rating':['TV-PG','TV-MA','TV-Y7-FV'],
'duration':['90 min','94 min','1 Season'],
'listed_in':['Children & Family Movies, Comedies',
'Stand-Up Comedy','Kids TV'],
'description':['Before planning an awesome wedding for his',
'Jandino Asporaat riffs on the challenges of ra',
'With the help of three human allies, the Autob']})

按国家分组:

df2 = df.groupby(by="country", as_index=False)['show_id']\
    .agg('count')

重命名聚合列:

df2 = df2.rename(columns={'show_id':'count'})

创建百分比列:

df2['percent'] = (df2['count']*100)/df2['count'].sum()

降序排列:

df2 = df2.sort_values(by='percent', ascending=False)

您的尝试 #1 中的部分问题可能是您没有在 groupby 函数中包含“by”参数。

    newDF = pd.DataFrame(DF.Country.value_counts())
    newDF['percentage'] = round(pd.DataFrame(DF.Country.value_counts(normalize =  \
         True).mul(100)),2)
    newDF.columns = ['count', 'percentage']

    newDF