而不是直接绘制,需要绘制平滑折线图python

rather than directly plotting ,need to plot smooth line chart python

我有 3 台机器的 3 个 df(Machine1/Machine2/Machine3)。每个 df 有 3 列。白班和生产。 样品 df:

   Day-Shift    Production Quality
    Day 11-01    20         A
    Night 11-01  45         A
    Day 11-02    65         A
    Night 11-02  12         B  
    Day 11-03    97         B

我的代码:

import numpy as np
import pandas as pd
from plotly.offline import iplot

import plotly.graph_objects as go


# Machine1: Create numpy arrays of values for the given quality.
b1 = np.where(df1['Quality'] == 'A', df1['Production'], None)

# Machine2: Same as above.
b2 = np.where(df2['Quality'] == 'A', df2['Production'], None)

# Machine3: Same as above.
b3 = np.where(df3['Quality'] == 'A', df3['Production'], None)


# Setup.
t = []
line = ['solid']
Quality = ['A']


t.append({'x': df1['Day-Shift'], 
              'y': b1, 
              'name': f'Machine1',
              'line': {'color': 'red', 
                       'dash': line[0]}})


t.append({'x': df2['Day-Shift'], 
              'y': b2,
              'name': f'Machine1',
              'line': {'color': 'blue', 
                       'dash': line[0]}})


t.append({'x': df3['Day-Shift'], 
              'y': b3,
              'name': f'Machine1',
              'line': {'color': 'yellow', 
                       'dash': line[0]}})
    

# Plot the graph.


layout = go.Layout(

    title='Production meterage of Machine1/Machine2/Machine3 for Quality A',
        template='plotly_dark',
        xaxis=dict(
            autorange=True
        ),
        yaxis=dict(
            autorange=True
        )
    )
fig = go.Figure(data=t, layout=layout)
iplot(fig)

我得到的图表:

我为所有三台机器创建了一个折线图。但是折线图看起来很乱。需要做平滑处理。我试过 gaussian_filter1d。但它对我不起作用。

我认为表示数据的最佳方式是使用直方图。我不太了解 ploty 离线模块,但您可以使用 matplotlib(轻松)完成它。

这是 matplotlib 的一些文档 https://matplotlib.org/3.1.1/api/_as_gen/matplotlib.pyplot.hist.html

还有一个例子: https://matplotlib.org/3.1.1/gallery/statistics/hist.html

以及一个包含 1 个图表的多个数据集的示例 https://matplotlib.org/3.1.1/gallery/statistics/histogram_multihist.html