如何按秒对 xarray 进行上采样并包括边界时间

How to upsample xarray by seconds and include bounding hours

我有一个 xarray.DataArray 坐标像

ary["time"] = [
    "2000-01-01T03:04:05",  # leading records are missing,
    "2000-01-01T03:04:06",
    "2000-01-01T03:04:08",  # some medium records are missing,
    "2000-01-01T03:04:09",
    "2000-01-01T03:04:11",
    ...
    "2000-01-01T06:54:02",
    "2000-01-01T06:54:03"   # and trailing records are missing.
]

并想重新索引到

ary["time"] = [
    "2000-01-01T03:00:00",
    "2000-01-01T03:00:01",
    "2000-01-01T03:00:02",
    ...
    "2000-01-01T03:04:06",
    "2000-01-01T03:04:07",
    "2000-01-01T03:04:08",
    "2000-01-01T03:04:09",
    ...
    "2000-01-01T06:59:57",
    "2000-01-01T06:59:58",
    "2000-01-01T06:59:59"
]

并在所有缺失记录处设置 NaN

我找到了 ary = ary.resample(time="1S").asfreq() 但它只插入了中等记录。

如何表示左右边界是每小时? (或分钟或天?)


样本(取自gist):

from datetime import datetime, timedelta

import numpy as np
import pandas as pd
import xarray as xr


def make_ary():
    time = []
    for i in range(300, 14000):
        if i % 3 != 2 and i % 5 != 2:
            time.append(datetime(2000, 1, 1, 3, 0, 0) + timedelta(seconds=i))

    data = np.random.rand(len(time))
    return xr.DataArray(data=data, coords=[("time", time)], dims=["time"])


def make_expected():
    expected = []
    for i in range(0, 4*60*60):
        expected.append(
            datetime(2000, 1, 1, 3, 0, 0) + timedelta(seconds=i)
        )
    return pd.to_datetime(np.array(expected))


def make_not_expected():
    '''
    result of 'inserts medium records'
    '''
    not_expected = []
    for i in range(300, 14000):
        not_expected.append(
            datetime(2000, 1, 1, 3, 0, 0) + timedelta(seconds=i)
        )
    return pd.to_datetime(np.array(not_expected))


def resample(ary):
    return ary.resample(time="1S").asfreq()


def main():
    ary = make_ary()
    expected = make_expected()
    not_expected = make_not_expected()

    print(np.array_equal(ary["time"].values, expected))  # False

    ary = resample(ary)
    print(np.array_equal(ary["time"], expected))      # False
    print(np.array_equal(ary["time"], not_expected))  # True, but not expected


main()

一种实现你想要的方法,就是在开头和结尾附加一个 NaN pad 和相应的时间戳,然后只使用 resample:


start_timestamp = "2000-01-01T03:00:00"
stop_timestamp = "2000-01-01T06:59:59"

ary2 = xr.concat([
    xr.DataArray(data=[np.nan], coords=[("time", pd.date_range(start=start_timestamp, freq="1S", periods=1))], dims=["time"]),
    ary,
    xr.DataArray(data=[np.nan], coords=[("time", pd.date_range(start=stop_timestamp, freq="1S", periods=1))], dims=["time"])
], dim="time").resample(time="1s").asfreq()

给你:

print(ary2.time)

# <xarray.DataArray 'time' (time: 14400)>
# array(['2000-01-01T03:00:00.000000000', '2000-01-01T03:00:01.000000000',
#        '2000-01-01T03:00:02.000000000', ..., '2000-01-01T06:59:57.000000000',
#        '2000-01-01T06:59:58.000000000', '2000-01-01T06:59:59.000000000'],
#       dtype='datetime64[ns]')
# Coordinates:
#   * time     (time) datetime64[ns] 2000-01-01T03:00:00 ... 2000-01-01T06:59:59

使用DataArray.reindex (Documentation)

特别是在这种情况下,DataArray.reindex 可能是更好的选择。

在下面的代码示例中,目标数组的日期范围是用date_range指定的(注意参数closed设置为"left",因为我们不想要包含的范围 "2000-01-01T07:00:00".

start_time = "2000-01-01T03:00:00"
end_time = "2000-01-01T07:00:00"
new_ary = ary.reindex(time=pd.date_range(start=start_time,end=end_time,freq="1S",closed='left'))
print(ary)

这给出了以下输出:

<xarray.DataArray 'time' (time: 14400)>
array(['2000-01-01T03:00:00.000000000', '2000-01-01T03:00:01.000000000',
       '2000-01-01T03:00:02.000000000', ..., '2000-01-01T06:59:57.000000000',
       '2000-01-01T06:59:58.000000000', '2000-01-01T06:59:59.000000000'],
      dtype='datetime64[ns]')
Coordinates:
  * time     (time) datetime64[ns] 2000-01-01T03:00:00 ... 2000-01-01T06:59:59

默认情况下,reindexNaN 填充缺失值。下面测试代码的输出表明 "2000-01-01T03:08:06""2000-01-01T03:08:09" 之间的缺失值被设置为新数组的 NaN

print(ary[100:102])
# Non NaN values start from index 300 for new_ary
print(new_ary[486:490])

输出:

<xarray.DataArray (time: 2)>
array([0.25910861, 0.07897777])
Coordinates:
  * time     (time) datetime64[ns] 2000-01-01T03:08:06 2000-01-01T03:08:09
<xarray.DataArray (time: 4)>
array([0.25910861,        nan,        nan, 0.07897777])
Coordinates:
  * time     (time) datetime64[ns] 2000-01-01T03:08:06 ... 2000-01-01T03:08:09