无法从 ARIMA 模型中识别 RMSE
Cannot identify RMSE from ARIMA model
我想知道 ARIMA 的误差结果,如 RMSE 等。我有 45 个月的夜灯数据。我有这样的 ARIMA 模型
fitARIMA <- arima(newdata, order=c(0,0,0),seasonal = list(order = c(1,0,0), period = 12))
summary(fitARIMA)
### here is the result
Call:
arima(x = newdata, order = c(0, 0, 0), seasonal = list(order = c(1, 0, 0), period = 12))
Coefficients:
sar1 intercept
0.4770 572.1038
s.e. 0.1608 38.5140
sigma^2 estimated as 26880: log likelihood = -294.88, aic = 593.76
Training set error measures:
ME RMSE MAE MPE MAPE
Training set NaN NaN NaN NaN NaN
Warning message:
In trainingaccuracy(object, test, d, D) :
test elements must be within sample
谁知道为什么会这样,如何解决这个问题?谢谢
这是我使用的数据
Jan Feb Mar Apr May Jun Jul
2015 467.38 441.67 579.30 600.41 793.38 576.80 741.21
2016 516.02 241.41 443.20 502.98 497.31 668.08 596.89
2017 325.89 253.30 737.37 462.75 609.31 559.05 581.16
2018 428.74 584.53 508.92 655.63 867.83 1059.98 509.34
Aug Sep Oct Nov Dec
2015 634.66 582.00 661.35 249.46 482.33
2016 686.76 598.28 598.23 391.71 492.66
2017 680.36 753.18 476.41 3.12 608.01
2018 820.85 825.13
将 arima
替换为 Arima
。 forecast 包中的 Arima()
函数保存由 summary()
函数使用的附加信息。
假设您的 newdata
对象属于 ts
class,频率设置为 12,则以下更简单的代码应该可以工作。
fitARIMA <- Arima(newdata, order=c(0,0,0), seasonal = c(1,0,0))
summary(fitARIMA)
我想知道 ARIMA 的误差结果,如 RMSE 等。我有 45 个月的夜灯数据。我有这样的 ARIMA 模型
fitARIMA <- arima(newdata, order=c(0,0,0),seasonal = list(order = c(1,0,0), period = 12))
summary(fitARIMA)
### here is the result
Call:
arima(x = newdata, order = c(0, 0, 0), seasonal = list(order = c(1, 0, 0), period = 12))
Coefficients:
sar1 intercept
0.4770 572.1038
s.e. 0.1608 38.5140
sigma^2 estimated as 26880: log likelihood = -294.88, aic = 593.76
Training set error measures:
ME RMSE MAE MPE MAPE
Training set NaN NaN NaN NaN NaN
Warning message:
In trainingaccuracy(object, test, d, D) :
test elements must be within sample
谁知道为什么会这样,如何解决这个问题?谢谢
这是我使用的数据
Jan Feb Mar Apr May Jun Jul
2015 467.38 441.67 579.30 600.41 793.38 576.80 741.21
2016 516.02 241.41 443.20 502.98 497.31 668.08 596.89
2017 325.89 253.30 737.37 462.75 609.31 559.05 581.16
2018 428.74 584.53 508.92 655.63 867.83 1059.98 509.34
Aug Sep Oct Nov Dec
2015 634.66 582.00 661.35 249.46 482.33
2016 686.76 598.28 598.23 391.71 492.66
2017 680.36 753.18 476.41 3.12 608.01
2018 820.85 825.13
将 arima
替换为 Arima
。 forecast 包中的 Arima()
函数保存由 summary()
函数使用的附加信息。
假设您的 newdata
对象属于 ts
class,频率设置为 12,则以下更简单的代码应该可以工作。
fitARIMA <- Arima(newdata, order=c(0,0,0), seasonal = c(1,0,0))
summary(fitARIMA)