如何检查矩形轮廓内部是否包含数字? (OpenCV - Python)
How can I check if the rectangle contour contains numbers inside or not? (OpenCV - Python)
我知道画质很差,但那是原图
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
rectKern = cv2.getStructuringElement(cv2.MORPH_RECT, (85, 64))
blackhat = cv2.morphologyEx(gray, cv2.MORPH_BLACKHAT, rectKern)
edges = cv2.Canny(light, 120, 255, 1)
squareKern = cv2.getStructuringElement(cv2.MORPH_RECT, (3, 3))
light = cv2.morphologyEx(gray, cv2.MORPH_OPEN, squareKern)
light = cv2.threshold(light, 0, 255, cv2.THRESH_BINARY | cv2.THRESH_OTSU)[1]
这是结果
如何检查蓝色矩形内是否有数字? (如果里面没有数字,那么我不会在它周围画一个边界框,因为它不是车牌)。
有多种方法可以做到这一点。根据您的要求选择。
1- 通过 pytesseract 进行 OCR - 裁剪矩形区域,然后将其传递给 tesseract 以从图像中提取文本。
# Import required packages
import cv2
import pytesseract
# Mention the installed location of Tesseract-OCR in your system
pytesseract.pytesseract.tesseract_cmd = 'System_path_to_tesseract.exe'
# Read image from which text needs to be extracted
img = cv2.imread("sample.jpg")
# Preprocessing the image starts
# Convert the image to gray scale
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
# Performing OTSU threshold
ret, thresh1 = cv2.threshold(gray, 0, 255, cv2.THRESH_OTSU | cv2.THRESH_BINARY_INV)
# Specify structure shape and kernel size.
# Kernel size increases or decreases the area
# of the rectangle to be detected.
# A smaller value like (10, 10) will detect
# each word instead of a sentence.
rect_kernel = cv2.getStructuringElement(cv2.MORPH_RECT, (18, 18))
# Appplying dilation on the threshold image
dilation = cv2.dilate(thresh1, rect_kernel, iterations = 1)
# Finding contours
contours, hierarchy = cv2.findContours(dilation, cv2.RETR_EXTERNAL,
cv2.CHAIN_APPROX_NONE)
# Creating a copy of image
im2 = img.copy()
# A text file is created and flushed
file = open("recognized.txt", "w+")
file.write("")
file.close()
# Looping through the identified contours
# Then rectangular part is cropped and passed on
# to pytesseract for extracting text from it
# Extracted text is then written into the text file
for cnt in contours:
x, y, w, h = cv2.boundingRect(cnt)
# Drawing a rectangle on copied image
rect = cv2.rectangle(im2, (x, y), (x + w, y + h), (0, 255, 0), 2)
# Cropping the text block for giving input to OCR
cropped = im2[y:y + h, x:x + w]
# Open the file in append mode
file = open("recognized.txt", "a")
# Apply OCR on the cropped image
text = pytesseract.image_to_string(cropped)
# Appending the text into file
file.write(text)
file.write("\n")
# Close the file
file.close
来源:Link
2- opencv的EAST文本检测器 - Tutorial
此外,请查看此 question 了解更多方法
还有this
我知道画质很差,但那是原图
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
rectKern = cv2.getStructuringElement(cv2.MORPH_RECT, (85, 64))
blackhat = cv2.morphologyEx(gray, cv2.MORPH_BLACKHAT, rectKern)
edges = cv2.Canny(light, 120, 255, 1)
squareKern = cv2.getStructuringElement(cv2.MORPH_RECT, (3, 3))
light = cv2.morphologyEx(gray, cv2.MORPH_OPEN, squareKern)
light = cv2.threshold(light, 0, 255, cv2.THRESH_BINARY | cv2.THRESH_OTSU)[1]
这是结果
如何检查蓝色矩形内是否有数字? (如果里面没有数字,那么我不会在它周围画一个边界框,因为它不是车牌)。
有多种方法可以做到这一点。根据您的要求选择。
1- 通过 pytesseract 进行 OCR - 裁剪矩形区域,然后将其传递给 tesseract 以从图像中提取文本。
# Import required packages
import cv2
import pytesseract
# Mention the installed location of Tesseract-OCR in your system
pytesseract.pytesseract.tesseract_cmd = 'System_path_to_tesseract.exe'
# Read image from which text needs to be extracted
img = cv2.imread("sample.jpg")
# Preprocessing the image starts
# Convert the image to gray scale
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
# Performing OTSU threshold
ret, thresh1 = cv2.threshold(gray, 0, 255, cv2.THRESH_OTSU | cv2.THRESH_BINARY_INV)
# Specify structure shape and kernel size.
# Kernel size increases or decreases the area
# of the rectangle to be detected.
# A smaller value like (10, 10) will detect
# each word instead of a sentence.
rect_kernel = cv2.getStructuringElement(cv2.MORPH_RECT, (18, 18))
# Appplying dilation on the threshold image
dilation = cv2.dilate(thresh1, rect_kernel, iterations = 1)
# Finding contours
contours, hierarchy = cv2.findContours(dilation, cv2.RETR_EXTERNAL,
cv2.CHAIN_APPROX_NONE)
# Creating a copy of image
im2 = img.copy()
# A text file is created and flushed
file = open("recognized.txt", "w+")
file.write("")
file.close()
# Looping through the identified contours
# Then rectangular part is cropped and passed on
# to pytesseract for extracting text from it
# Extracted text is then written into the text file
for cnt in contours:
x, y, w, h = cv2.boundingRect(cnt)
# Drawing a rectangle on copied image
rect = cv2.rectangle(im2, (x, y), (x + w, y + h), (0, 255, 0), 2)
# Cropping the text block for giving input to OCR
cropped = im2[y:y + h, x:x + w]
# Open the file in append mode
file = open("recognized.txt", "a")
# Apply OCR on the cropped image
text = pytesseract.image_to_string(cropped)
# Appending the text into file
file.write(text)
file.write("\n")
# Close the file
file.close
来源:Link
2- opencv的EAST文本检测器 - Tutorial
此外,请查看此 question 了解更多方法
还有this