使用 python 对 json 数据进行数据预处理(Jupyter 笔记本)

Data preprocessing with json data using python (Jupyter notebook)

我正在尝试为 json 数据集执行一些预处理命令。使用 .csv 文件很容易,但我无法了解如何实现一些预处理命令,如 isnull()、fillna()、dropna() 和 imputer class.

以下是我已执行但未能执行上述操作的一些命令,因为我无法弄清楚如何使用 Json 文件数据集。

数据集link:https://drive.google.com/file/d/1puNNrRaV-Jt_kt709fuYGCvDW9-EuwoB/view?usp=sharing

import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
import json

dataset = pd.read_json('moviereviews.json', orient='columns')
print(dataset)

movies = pd.read_json( ( dataset).to_json(), orient='index')
print(movies)
print(type(movies))

movie = pd.read_json( ( dataset['12 Strong']).to_json(), orient='index')
print(movie)

movie_name = [
    "12 Strong",
    "A Ciambra",
    "All The Money In The World",
    "Along With The Gods: The Two Worlds",
    "Bilal: A New Breed Of Hero",
    "Call Me By Your Name",
    "Condorito: La Película",
    "Darkest Hour",
    "Den Of Thieves",
    "Downsizing",
    "Father Figures",
    "Film Stars Don'T Die In Liverpool",
    "Forever My Girl",
    "Happy End",
    "Hostiles",
    "I, Tonya",
    "In The Fade (Aus Dem Nichts)",
    "Insidious: The Last Key",
    "Jumanji: Welcome To The Jungle",
    "Mary And The Witch'S Flower",
    "Maze Runner: The Death Cure",
    "Molly'S Game",
    "Paddington 2",
    "Padmaavat",
    "Phantom Thread",
    "Pitch Perfect 3",
    "Proud Mary",
    "Star Wars: Episode Viii - The Last Jedi",
    "Star Wars: The Last Jedi",
    "The Cage Fighter",
    "The Commuter",
    "The Final Year",
    "The Greatest Showman",
    "The Insult (L'Insulte)",
    "The Post",
    "The Shape Of Water",
    "Una Mujer Fantástica",
    "Winchester"
]
print(movie_name)

data = []
for moviename in movie_name:
    movie = pd.read_json( ( dataset[moviename]).to_json(), orient='index')
    data.append(movie)
   
print(data)

您对该数据集的挑战之一是它对相同数据具有不同的键名称,例如 'Tomato Score''tomatoscore' 。下面的解决方案不是最好的,它可以优化很多,但是,我这样说是为了让您更容易看到为使数据一致而实施的步骤:

import pandas as pd

with open('moviereviews.json', "r") as read_file:
    dataset = json.load(read_file)

data = []

for index in range(len(dataset)):
    for key in dataset[index]:
        movie_name = key
        
        if 'Genre' in dataset[index][key]:
            genre = dataset[index][key]['Genre']
        else:
            genre = None
            
        if 'Gross' in dataset[index][key]:
            gross = dataset[index][key]['Gross']
        else:
            gross = None
            
        if 'IMDB Metascore' in  dataset[index][key]:
            imdb = dataset[index][key]['IMDB Metascore']            
        else:
            imdb = None
            
        if 'Popcorn Score' in dataset[index][key]:
            popcorn = dataset[index][key]['Popcorn Score']            
        elif 'popcornscore' in  dataset[index][key]:
            popcorn = dataset[index][key]['popcornscore']
        else:
            popcorn = None                                              
                                                      
        if 'Rating' in dataset[index][key]:
            rating = dataset[index][key]['Rating']                                     
        elif 'rating' in dataset[index][key]:
            rating = dataset[index][key]['rating']
        else:
            rating = None
            
        if 'Tomato Score' in dataset[index][key]:                                         
            tomato = dataset[index][key]['Tomato Score']                                       
        elif 'tomatoscore' in dataset[index][key]:
            tomato = dataset[index][key]['tomatoscore']                                              
        else:
            tomato = None
                
        data.append({'Movie Name': movie_name,
                     'Genre': genre,
                     'Gross': gross,
                     'IMDB Metascore': imdb,
                     'Popcorn Score': popcorn,
                     'Rating': rating,
                     'Tomato Score': tomato})
    
df = pd.DataFrame(data)

df
        

您可以拆分字典中的项目并单独阅读它们,一次性用 None 填充 NaN。

如果你的json被称为数据,那么

df = pd.DataFrame(data[0].values()).fillna('None')
df['Movie Name'] = pd.DataFrame(data[0].keys())
df.set_index('Movie Name', inplace=True)

df.head()

                                         Genre       Gross IMDB Metascore Popcorn Score   Rating Tomato Score popcornscore rating tomatoscore
Movie Name
12 Strong                               Action  ,465,000             54            72        R           54         None   None        None
A Ciambra                                Drama     unknown             70       unknown  unrated       unkown         None   None        None
All The Money In The World                None        None           None          None     None         None         72.0      R        76.0
Along With The Gods: The Two Worlds       None        None           None          None     None         None         90.0     NR        50.0
Bilal: A New Breed Of Hero           Animation     unknown             52       unknown  unrated       unkown         None   None        None