Keras problem: AttributeError: 'Tensor' object has no attribute '_keras_history' by fitting BiLSTM-CRF
Keras problem: AttributeError: 'Tensor' object has no attribute '_keras_history' by fitting BiLSTM-CRF
关于同一个问题有很多问答。不幸的是,它们对我不起作用。
我的旨在从评论中提取方面术语的模型具有以下架构:
Model: "model"
_________________________________________________________________
Layer (type) Output Shape Param #
=================================================================
input_1 (InputLayer) [(None, 75)] 0
_________________________________________________________________
embedding (Embedding) (None, 75, 300) 2635800
_________________________________________________________________
bidirectional (Bidirectional (None, 75, 512) 1140736
_________________________________________________________________
time_distributed (TimeDistri (None, 75, 50) 25650
_________________________________________________________________
crf (CRF) (None, 75, 4) 228
=================================================================
Total params: 3,802,414
Trainable params: 3,802,414
Non-trainable params: 0
代码如下:
#==============Bi-LSTM CRF=============
input = Input(shape=(max_len,))
model = Embedding(input_dim=n_words,
output_dim=300,
weights=[embedding_matrix],
input_length=max_len,
mask_zero=True)(input) # 20-dim embedding
model = Bidirectional(LSTM(units=256, return_sequences=True,
recurrent_dropout=0.1))(model) # variational biLSTM
model = TimeDistributed(Dense(50, activation="tanh"))(model) # a dense layer as suggested by neuralNer
crf = CRF(n_tags) # CRF layer
out = crf(model) # output
model = Model(input, out)
model.compile(optimizer="rmsprop", loss=crf.loss_function, metrics=[crf.accuracy])
model.summary()
我在训练模型时遇到以下问题:
Epoch 1/8
---------------------------------------------------------------------------
AttributeError Traceback (most recent call last)
<ipython-input-45-95fc1a21681d> in <module>()
1 history = model.fit(X_train, np.array(y_train), batch_size=32, epochs=8,
----> 2 validation_split=0.1, verbose=1)
9 frames
/usr/local/lib/python3.6/dist-packages/tensorflow/python/keras/engine/training.py in fit(self, x, y, batch_size, epochs, verbose, callbacks, validation_split, validation_data, shuffle, class_weight, sample_weight, initial_epoch, steps_per_epoch, validation_steps, validation_batch_size, validation_freq, max_queue_size, workers, use_multiprocessing)
1098 _r=1):
1099 callbacks.on_train_batch_begin(step)
-> 1100 tmp_logs = self.train_function(iterator)
1101 if data_handler.should_sync:
1102 context.async_wait()
/usr/local/lib/python3.6/dist-packages/tensorflow/python/eager/def_function.py in __call__(self, *args, **kwds)
826 tracing_count = self.experimental_get_tracing_count()
827 with trace.Trace(self._name) as tm:
--> 828 result = self._call(*args, **kwds)
829 compiler = "xla" if self._experimental_compile else "nonXla"
830 new_tracing_count = self.experimental_get_tracing_count()
/usr/local/lib/python3.6/dist-packages/tensorflow/python/eager/def_function.py in _call(self, *args, **kwds)
869 # This is the first call of __call__, so we have to initialize.
870 initializers = []
--> 871 self._initialize(args, kwds, add_initializers_to=initializers)
872 finally:
873 # At this point we know that the initialization is complete (or less
/usr/local/lib/python3.6/dist-packages/tensorflow/python/eager/def_function.py in _initialize(self, args, kwds, add_initializers_to)
724 self._concrete_stateful_fn = (
725 self._stateful_fn._get_concrete_function_internal_garbage_collected( # pylint: disable=protected-access
--> 726 *args, **kwds))
727
728 def invalid_creator_scope(*unused_args, **unused_kwds):
/usr/local/lib/python3.6/dist-packages/tensorflow/python/eager/function.py in _get_concrete_function_internal_garbage_collected(self, *args, **kwargs)
2967 args, kwargs = None, None
2968 with self._lock:
-> 2969 graph_function, _ = self._maybe_define_function(args, kwargs)
2970 return graph_function
2971
/usr/local/lib/python3.6/dist-packages/tensorflow/python/eager/function.py in _maybe_define_function(self, args, kwargs)
3359
3360 self._function_cache.missed.add(call_context_key)
-> 3361 graph_function = self._create_graph_function(args, kwargs)
3362 self._function_cache.primary[cache_key] = graph_function
3363
/usr/local/lib/python3.6/dist-packages/tensorflow/python/eager/function.py in _create_graph_function(self, args, kwargs, override_flat_arg_shapes)
3204 arg_names=arg_names,
3205 override_flat_arg_shapes=override_flat_arg_shapes,
-> 3206 capture_by_value=self._capture_by_value),
3207 self._function_attributes,
3208 function_spec=self.function_spec,
/usr/local/lib/python3.6/dist-packages/tensorflow/python/framework/func_graph.py in func_graph_from_py_func(name, python_func, args, kwargs, signature, func_graph, autograph, autograph_options, add_control_dependencies, arg_names, op_return_value, collections, capture_by_value, override_flat_arg_shapes)
988 _, original_func = tf_decorator.unwrap(python_func)
989
--> 990 func_outputs = python_func(*func_args, **func_kwargs)
991
992 # invariant: `func_outputs` contains only Tensors, CompositeTensors,
/usr/local/lib/python3.6/dist-packages/tensorflow/python/eager/def_function.py in wrapped_fn(*args, **kwds)
632 xla_context.Exit()
633 else:
--> 634 out = weak_wrapped_fn().__wrapped__(*args, **kwds)
635 return out
636
/usr/local/lib/python3.6/dist-packages/tensorflow/python/framework/func_graph.py in wrapper(*args, **kwargs)
975 except Exception as e: # pylint:disable=broad-except
976 if hasattr(e, "ag_error_metadata"):
--> 977 raise e.ag_error_metadata.to_exception(e)
978 else:
979 raise
AttributeError: in user code:
/usr/local/lib/python3.6/dist-packages/tensorflow/python/keras/engine/training.py:805 train_function *
return step_function(self, iterator)
/usr/local/lib/python3.6/dist-packages/keras_contrib/losses/crf_losses.py:54 crf_loss *
crf, idx = y_pred._keras_history[:2]
AttributeError: 'Tensor' object has no attribute '_keras_history'
我正在使用 google colab。张量流版本 2.4.0
你能帮帮我吗?
我通过安装tensorflow 2.2版和keras 2.3.1版解决了这个问题。发生这种情况是因为 keras 现在不支持较新版本的 keras_contrib。
关于同一个问题有很多问答。不幸的是,它们对我不起作用。
我的旨在从评论中提取方面术语的模型具有以下架构:
Model: "model"
_________________________________________________________________
Layer (type) Output Shape Param #
=================================================================
input_1 (InputLayer) [(None, 75)] 0
_________________________________________________________________
embedding (Embedding) (None, 75, 300) 2635800
_________________________________________________________________
bidirectional (Bidirectional (None, 75, 512) 1140736
_________________________________________________________________
time_distributed (TimeDistri (None, 75, 50) 25650
_________________________________________________________________
crf (CRF) (None, 75, 4) 228
=================================================================
Total params: 3,802,414
Trainable params: 3,802,414
Non-trainable params: 0
代码如下:
#==============Bi-LSTM CRF=============
input = Input(shape=(max_len,))
model = Embedding(input_dim=n_words,
output_dim=300,
weights=[embedding_matrix],
input_length=max_len,
mask_zero=True)(input) # 20-dim embedding
model = Bidirectional(LSTM(units=256, return_sequences=True,
recurrent_dropout=0.1))(model) # variational biLSTM
model = TimeDistributed(Dense(50, activation="tanh"))(model) # a dense layer as suggested by neuralNer
crf = CRF(n_tags) # CRF layer
out = crf(model) # output
model = Model(input, out)
model.compile(optimizer="rmsprop", loss=crf.loss_function, metrics=[crf.accuracy])
model.summary()
我在训练模型时遇到以下问题:
Epoch 1/8
---------------------------------------------------------------------------
AttributeError Traceback (most recent call last)
<ipython-input-45-95fc1a21681d> in <module>()
1 history = model.fit(X_train, np.array(y_train), batch_size=32, epochs=8,
----> 2 validation_split=0.1, verbose=1)
9 frames
/usr/local/lib/python3.6/dist-packages/tensorflow/python/keras/engine/training.py in fit(self, x, y, batch_size, epochs, verbose, callbacks, validation_split, validation_data, shuffle, class_weight, sample_weight, initial_epoch, steps_per_epoch, validation_steps, validation_batch_size, validation_freq, max_queue_size, workers, use_multiprocessing)
1098 _r=1):
1099 callbacks.on_train_batch_begin(step)
-> 1100 tmp_logs = self.train_function(iterator)
1101 if data_handler.should_sync:
1102 context.async_wait()
/usr/local/lib/python3.6/dist-packages/tensorflow/python/eager/def_function.py in __call__(self, *args, **kwds)
826 tracing_count = self.experimental_get_tracing_count()
827 with trace.Trace(self._name) as tm:
--> 828 result = self._call(*args, **kwds)
829 compiler = "xla" if self._experimental_compile else "nonXla"
830 new_tracing_count = self.experimental_get_tracing_count()
/usr/local/lib/python3.6/dist-packages/tensorflow/python/eager/def_function.py in _call(self, *args, **kwds)
869 # This is the first call of __call__, so we have to initialize.
870 initializers = []
--> 871 self._initialize(args, kwds, add_initializers_to=initializers)
872 finally:
873 # At this point we know that the initialization is complete (or less
/usr/local/lib/python3.6/dist-packages/tensorflow/python/eager/def_function.py in _initialize(self, args, kwds, add_initializers_to)
724 self._concrete_stateful_fn = (
725 self._stateful_fn._get_concrete_function_internal_garbage_collected( # pylint: disable=protected-access
--> 726 *args, **kwds))
727
728 def invalid_creator_scope(*unused_args, **unused_kwds):
/usr/local/lib/python3.6/dist-packages/tensorflow/python/eager/function.py in _get_concrete_function_internal_garbage_collected(self, *args, **kwargs)
2967 args, kwargs = None, None
2968 with self._lock:
-> 2969 graph_function, _ = self._maybe_define_function(args, kwargs)
2970 return graph_function
2971
/usr/local/lib/python3.6/dist-packages/tensorflow/python/eager/function.py in _maybe_define_function(self, args, kwargs)
3359
3360 self._function_cache.missed.add(call_context_key)
-> 3361 graph_function = self._create_graph_function(args, kwargs)
3362 self._function_cache.primary[cache_key] = graph_function
3363
/usr/local/lib/python3.6/dist-packages/tensorflow/python/eager/function.py in _create_graph_function(self, args, kwargs, override_flat_arg_shapes)
3204 arg_names=arg_names,
3205 override_flat_arg_shapes=override_flat_arg_shapes,
-> 3206 capture_by_value=self._capture_by_value),
3207 self._function_attributes,
3208 function_spec=self.function_spec,
/usr/local/lib/python3.6/dist-packages/tensorflow/python/framework/func_graph.py in func_graph_from_py_func(name, python_func, args, kwargs, signature, func_graph, autograph, autograph_options, add_control_dependencies, arg_names, op_return_value, collections, capture_by_value, override_flat_arg_shapes)
988 _, original_func = tf_decorator.unwrap(python_func)
989
--> 990 func_outputs = python_func(*func_args, **func_kwargs)
991
992 # invariant: `func_outputs` contains only Tensors, CompositeTensors,
/usr/local/lib/python3.6/dist-packages/tensorflow/python/eager/def_function.py in wrapped_fn(*args, **kwds)
632 xla_context.Exit()
633 else:
--> 634 out = weak_wrapped_fn().__wrapped__(*args, **kwds)
635 return out
636
/usr/local/lib/python3.6/dist-packages/tensorflow/python/framework/func_graph.py in wrapper(*args, **kwargs)
975 except Exception as e: # pylint:disable=broad-except
976 if hasattr(e, "ag_error_metadata"):
--> 977 raise e.ag_error_metadata.to_exception(e)
978 else:
979 raise
AttributeError: in user code:
/usr/local/lib/python3.6/dist-packages/tensorflow/python/keras/engine/training.py:805 train_function *
return step_function(self, iterator)
/usr/local/lib/python3.6/dist-packages/keras_contrib/losses/crf_losses.py:54 crf_loss *
crf, idx = y_pred._keras_history[:2]
AttributeError: 'Tensor' object has no attribute '_keras_history'
我正在使用 google colab。张量流版本 2.4.0
你能帮帮我吗?
我通过安装tensorflow 2.2版和keras 2.3.1版解决了这个问题。发生这种情况是因为 keras 现在不支持较新版本的 keras_contrib。