通过 GEKKO 中的 L0-norm/number 个非零元素来约束混合整数非线性优化问题
Constraining a Mixed-Integer Non-Linear optimization problem by L0-norm/number of non-zero elements in GEKKO
我想最小化实现一组给定的非负整数值 b 的成本,这些值是根据 GEKKO 中的两组非负整数变量 x、y 线性计算的。
如果以某种方式陈述了我的问题,那么 b 是对 x 和 y 的约束。我的成本函数是非线性的:使用 conditional/minimum 的二次函数。除了这些标准约束之外,我还有一个约束,要求 x 中非零元素的数量至少与 x 中的最大元素一样大(例如,L0 范数等于 LInifity 范数)。
我现在的困难是双重的,因为我是优化方面的新手,也是 GEKKO 的新手。
- 我看到 GEKKO 支持 numpy 数组,这会使问题陈述相当简洁,但我很难让它发挥作用 - 导致大量列表理解而不是向量化操作。
- 我设法定义了 L0 范数约束并且 GEKKO 实际运行它,但它未能找到解决方案。我认识到 L0 问题真的很难(例如组合),但不知何故,解决方案很容易通过“手工”找到。我只是觉得我做错了什么。
如有任何帮助,我将不胜感激!这是我到目前为止所做的:
from gekko import GEKKO
import numpy as np
# Setup gekko (taken from their MINLP tutorial with more iterations).
m = GEKKO()
m.options.SOLVER = 1 # APOPT is an MINLP solver
m.solver_options = ('minlp_maximum_iterations 500',
'minlp_max_iter_with_int_sol 10',
'minlp_as_nlp 0',
'nlp_maximum_iterations 50',
'minlp_branch_method 1',
'minlp_integer_tol 0.05',
'minlp_gap_tol 0.01')
# Define variables as arrays.
y = m.Array(m.Var, (7), value=1, lb=1, ub=12, integer=True)
x = m.Array(m.Var, (18), value=0, lb=0, ub=8, integer=True)
# Example of the user-defined target values b as constraints (actually input args).
m.Equation(x[2] + y[1] == 7)
m.Equation(x[12] + y[2] == 5)
# This is the L0 constraint.
# I thought using m.Array would make this a nice definition like
# m.Equation(np.count_nonzero(x) >= np.max(x))
# but it didn't, since these numpy functions are not supported in GEKKO.
# So I defined the following , which feels wrong:
m.Equation(m.sum([int(x_i.value > 0) for x_i in x]) >= max(x_i.value for x_i in x))
# Finally, the objective function (intermediates for readability).
k = np.array([m.min2(y_i, 3) for y_i in y])
x_cost = m.Intermediate(m.sum(x * (x + 1)))
y_cost = m.Intermediate(m.sum((k - 1) * (k + 2) + 2.5 * (y - k) * (y + k - 3)))
m.Obj(x_cost + y_cost)
# Solve.
m.solve(disp=True, debug=True)
Gekko 使用基于梯度的求解器,因此方程式不应在迭代之间改变。有一种方法可以获取与基于梯度的求解器兼容的非零变量的计数。这是另一种形式,可为您提供 x
向量的计数和最大值。这使用在 documentation on Model Building Functions with logical conditions.
中找到的 if3
、max3
和 min3
from gekko import GEKKO
import numpy as np
# Setup gekko (taken from their MINLP tutorial with more iterations).
m = GEKKO(remote=False)
# Define variables as arrays.
y = m.Array(m.Var, (7), value=1, lb=1, ub=12, integer=True)
x = m.Array(m.Var, (18), value=0, lb=0, ub=8, integer=True)
# Example of the user-defined target values b as constraints (actually input args).
m.Equation(x[2] + y[1] == 7)
m.Equation(x[12] + y[2] == 5)
# This is the L0 constraint.
# m.Equation(np.count_nonzero(x) >= np.max(x))
eps = 0.05 # decision point for a "zero" value
count = m.sum([m.if3(x_i-eps,0,1) for x_i in x])
max_x = 0
for x_i in x:
max_x = m.Intermediate(m.max3(max_x,x_i))
m.Equation(count >= max_x)
# Finally, the objective function (intermediates for readability).
k = np.array([m.min3(y_i, 3) for y_i in y])
x_cost = m.Intermediate(m.sum(x * (x + 1)))
y_cost = m.Intermediate(m.sum((k - 1) * (k + 2) + 2.5 * (y - k) * (y + k - 3)))
m.Minimize(x_cost + y_cost)
# Solve.
m.options.SOLVER = 3 # Initialize with IPOPT
m.solve(disp=True)
m.options.SOLVER = 1 # APOPT is an MINLP solver
m.solver_options = ('minlp_maximum_iterations 500',
'minlp_max_iter_with_int_sol 10',
'minlp_as_nlp 0',
'nlp_maximum_iterations 50',
'minlp_branch_method 1',
'minlp_integer_tol 0.05',
'minlp_gap_tol 0.01')
m.solve(disp=True)
我使用 IPOPT 给出了一个非整数的初始化解,然后 APOPT 找到了最优的整数解。这种方法产生了一个成功的解决方案 x
>>> x
array([[0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0],
[0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0]],
dtype=object)
和y
>>> y
array([[1.0], [7.0], [5.0], [1.0], [1.0], [1.0], [1.0]], dtype=object)
您可能不打算 x
的零解,因此您可能需要添加约束,例如 m.Equation(count>=n)
或更改 eps=0.05
以找到非零值或推送求解器在局部最小值处远离零。使用 m.Equation(count>=n)
和 eps=0.5
它找到了更好的解决方案:
n=3, obj=63
n=5, obj=52
这是 x
和 y
在 obj=52
时的解决方案(已找到最佳解决方案)。
>>> x
array([[0.0], [1.0], [4.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0],
[0.0], [1.0], [0.0], [2.0], [0.0], [0.0], [0.0], [1.0], [0.0]],
dtype=object)
>>> y
array([[1.0], [3.0], [3.0], [1.0], [1.0], [1.0], [1.0]], dtype=object)
您可能需要调整 if3
中使用的 eps
以调整何时将值计为非零或调整 minlp_integer_tol 0.05
这是求解器选项以确定整数公差。这是带有附加不等式约束的最终脚本,可提供最佳解决方案。
from gekko import GEKKO
import numpy as np
# Setup gekko (taken from their MINLP tutorial with more iterations).
m = GEKKO(remote=False)
# Define variables as arrays.
y = m.Array(m.Var, (7), value=1, lb=1, ub=12, integer=True)
x = m.Array(m.Var, (18), value=0, lb=0, ub=8, integer=True)
# Example of the user-defined target values b as constraints (actually input args).
m.Equation(x[2] + y[1] == 7)
m.Equation(x[12] + y[2] == 5)
# This is the L0 constraint.
# m.Equation(np.count_nonzero(x) >= np.max(x))
eps = 0.5 # threshold for a "zero" value
count = m.sum([m.if3(x_i-eps,0,1) for x_i in x])
max_x = 0
for x_i in x:
max_x = m.Intermediate(m.max3(max_x,x_i))
m.Equation(count >= max_x)
# Finally, the objective function (intermediates for readability).
k = np.array([m.min3(y_i, 3) for y_i in y])
x_cost = m.Intermediate(m.sum(x * (x + 1)))
y_cost = m.Intermediate(m.sum((k - 1) * (k + 2) + 2.5 * (y - k) * (y + k - 3)))
m.Minimize(x_cost + y_cost)
m.Equation(count>=5)
# Solve.
m.options.SOLVER = 3 # Initialize with IPOPT
m.solve(disp=True)
m.options.SOLVER = 1 # APOPT is an MINLP solver
m.solver_options = ('minlp_maximum_iterations 500',
'minlp_max_iter_with_int_sol 10',
'minlp_as_nlp 0',
'nlp_maximum_iterations 50',
'minlp_branch_method 1',
'minlp_integer_tol 0.05',
'minlp_gap_tol 0.01')
m.solve(disp=True)
您可以调整 n
或一些求解器选项以获得更好的解决方案。我希望这可以帮助您指明正确的方向。
我想最小化实现一组给定的非负整数值 b 的成本,这些值是根据 GEKKO 中的两组非负整数变量 x、y 线性计算的。 如果以某种方式陈述了我的问题,那么 b 是对 x 和 y 的约束。我的成本函数是非线性的:使用 conditional/minimum 的二次函数。除了这些标准约束之外,我还有一个约束,要求 x 中非零元素的数量至少与 x 中的最大元素一样大(例如,L0 范数等于 LInifity 范数)。
我现在的困难是双重的,因为我是优化方面的新手,也是 GEKKO 的新手。
- 我看到 GEKKO 支持 numpy 数组,这会使问题陈述相当简洁,但我很难让它发挥作用 - 导致大量列表理解而不是向量化操作。
- 我设法定义了 L0 范数约束并且 GEKKO 实际运行它,但它未能找到解决方案。我认识到 L0 问题真的很难(例如组合),但不知何故,解决方案很容易通过“手工”找到。我只是觉得我做错了什么。
如有任何帮助,我将不胜感激!这是我到目前为止所做的:
from gekko import GEKKO
import numpy as np
# Setup gekko (taken from their MINLP tutorial with more iterations).
m = GEKKO()
m.options.SOLVER = 1 # APOPT is an MINLP solver
m.solver_options = ('minlp_maximum_iterations 500',
'minlp_max_iter_with_int_sol 10',
'minlp_as_nlp 0',
'nlp_maximum_iterations 50',
'minlp_branch_method 1',
'minlp_integer_tol 0.05',
'minlp_gap_tol 0.01')
# Define variables as arrays.
y = m.Array(m.Var, (7), value=1, lb=1, ub=12, integer=True)
x = m.Array(m.Var, (18), value=0, lb=0, ub=8, integer=True)
# Example of the user-defined target values b as constraints (actually input args).
m.Equation(x[2] + y[1] == 7)
m.Equation(x[12] + y[2] == 5)
# This is the L0 constraint.
# I thought using m.Array would make this a nice definition like
# m.Equation(np.count_nonzero(x) >= np.max(x))
# but it didn't, since these numpy functions are not supported in GEKKO.
# So I defined the following , which feels wrong:
m.Equation(m.sum([int(x_i.value > 0) for x_i in x]) >= max(x_i.value for x_i in x))
# Finally, the objective function (intermediates for readability).
k = np.array([m.min2(y_i, 3) for y_i in y])
x_cost = m.Intermediate(m.sum(x * (x + 1)))
y_cost = m.Intermediate(m.sum((k - 1) * (k + 2) + 2.5 * (y - k) * (y + k - 3)))
m.Obj(x_cost + y_cost)
# Solve.
m.solve(disp=True, debug=True)
Gekko 使用基于梯度的求解器,因此方程式不应在迭代之间改变。有一种方法可以获取与基于梯度的求解器兼容的非零变量的计数。这是另一种形式,可为您提供 x
向量的计数和最大值。这使用在 documentation on Model Building Functions with logical conditions.
if3
、max3
和 min3
from gekko import GEKKO
import numpy as np
# Setup gekko (taken from their MINLP tutorial with more iterations).
m = GEKKO(remote=False)
# Define variables as arrays.
y = m.Array(m.Var, (7), value=1, lb=1, ub=12, integer=True)
x = m.Array(m.Var, (18), value=0, lb=0, ub=8, integer=True)
# Example of the user-defined target values b as constraints (actually input args).
m.Equation(x[2] + y[1] == 7)
m.Equation(x[12] + y[2] == 5)
# This is the L0 constraint.
# m.Equation(np.count_nonzero(x) >= np.max(x))
eps = 0.05 # decision point for a "zero" value
count = m.sum([m.if3(x_i-eps,0,1) for x_i in x])
max_x = 0
for x_i in x:
max_x = m.Intermediate(m.max3(max_x,x_i))
m.Equation(count >= max_x)
# Finally, the objective function (intermediates for readability).
k = np.array([m.min3(y_i, 3) for y_i in y])
x_cost = m.Intermediate(m.sum(x * (x + 1)))
y_cost = m.Intermediate(m.sum((k - 1) * (k + 2) + 2.5 * (y - k) * (y + k - 3)))
m.Minimize(x_cost + y_cost)
# Solve.
m.options.SOLVER = 3 # Initialize with IPOPT
m.solve(disp=True)
m.options.SOLVER = 1 # APOPT is an MINLP solver
m.solver_options = ('minlp_maximum_iterations 500',
'minlp_max_iter_with_int_sol 10',
'minlp_as_nlp 0',
'nlp_maximum_iterations 50',
'minlp_branch_method 1',
'minlp_integer_tol 0.05',
'minlp_gap_tol 0.01')
m.solve(disp=True)
我使用 IPOPT 给出了一个非整数的初始化解,然后 APOPT 找到了最优的整数解。这种方法产生了一个成功的解决方案 x
>>> x
array([[0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0],
[0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0]],
dtype=object)
和y
>>> y
array([[1.0], [7.0], [5.0], [1.0], [1.0], [1.0], [1.0]], dtype=object)
您可能不打算 x
的零解,因此您可能需要添加约束,例如 m.Equation(count>=n)
或更改 eps=0.05
以找到非零值或推送求解器在局部最小值处远离零。使用 m.Equation(count>=n)
和 eps=0.5
它找到了更好的解决方案:
n=3, obj=63
n=5, obj=52
这是 x
和 y
在 obj=52
时的解决方案(已找到最佳解决方案)。
>>> x
array([[0.0], [1.0], [4.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0],
[0.0], [1.0], [0.0], [2.0], [0.0], [0.0], [0.0], [1.0], [0.0]],
dtype=object)
>>> y
array([[1.0], [3.0], [3.0], [1.0], [1.0], [1.0], [1.0]], dtype=object)
您可能需要调整 if3
中使用的 eps
以调整何时将值计为非零或调整 minlp_integer_tol 0.05
这是求解器选项以确定整数公差。这是带有附加不等式约束的最终脚本,可提供最佳解决方案。
from gekko import GEKKO
import numpy as np
# Setup gekko (taken from their MINLP tutorial with more iterations).
m = GEKKO(remote=False)
# Define variables as arrays.
y = m.Array(m.Var, (7), value=1, lb=1, ub=12, integer=True)
x = m.Array(m.Var, (18), value=0, lb=0, ub=8, integer=True)
# Example of the user-defined target values b as constraints (actually input args).
m.Equation(x[2] + y[1] == 7)
m.Equation(x[12] + y[2] == 5)
# This is the L0 constraint.
# m.Equation(np.count_nonzero(x) >= np.max(x))
eps = 0.5 # threshold for a "zero" value
count = m.sum([m.if3(x_i-eps,0,1) for x_i in x])
max_x = 0
for x_i in x:
max_x = m.Intermediate(m.max3(max_x,x_i))
m.Equation(count >= max_x)
# Finally, the objective function (intermediates for readability).
k = np.array([m.min3(y_i, 3) for y_i in y])
x_cost = m.Intermediate(m.sum(x * (x + 1)))
y_cost = m.Intermediate(m.sum((k - 1) * (k + 2) + 2.5 * (y - k) * (y + k - 3)))
m.Minimize(x_cost + y_cost)
m.Equation(count>=5)
# Solve.
m.options.SOLVER = 3 # Initialize with IPOPT
m.solve(disp=True)
m.options.SOLVER = 1 # APOPT is an MINLP solver
m.solver_options = ('minlp_maximum_iterations 500',
'minlp_max_iter_with_int_sol 10',
'minlp_as_nlp 0',
'nlp_maximum_iterations 50',
'minlp_branch_method 1',
'minlp_integer_tol 0.05',
'minlp_gap_tol 0.01')
m.solve(disp=True)
您可以调整 n
或一些求解器选项以获得更好的解决方案。我希望这可以帮助您指明正确的方向。