mlxtend.feature_selection 前向选择不适用于 SVM 线性内核?

mlxtend.feature_selection forward selection not working with SVM linear kernel?

所以我正在使用 SVM 和 mlxtend packege 执行特征选择。 X 是具有特征的数据框,y 是目标变量。这是我的代码的一部分。

from sklearn.svm import SVC
from mlxtend.feature_selection import SequentialFeatureSelector as SFS

def SFFS(X, y, C_GS, gamma_GS, kernel_GS):
    sfs = SFS(SVC(kernel = kernel_GS, C = C_GS, gamma = gamma_GS),
         k_features = (1, num_of_features),
          forward= True,
          floating = False,
          verbose= 2,
          scoring= 'roc_auc',
          #scoring= 'accuracy',
          cv = 10,
          n_jobs= -1
         ).fit(X, y)

    return sfs

def SFFS_lin(X, y, C_GS, kernel_GS):
    sfs = SFS(SVC(kernel = kernel_GS, C = C_GS),
         k_features = (1, num_of_features),
          forward= True,
          floating = False,
          verbose= 2,
          scoring= 'roc_auc',
          cv = 10,
          n_jobs= -1
         ).fit(X, y)
    return sfs

def featureNames(sfs):
    Feature_Names = sfs.k_feature_names_
    return Feature_Names


sfs_lin = SFFS_lin(X, y, 1,'linear')
#sfs_rbf = SFFS(X, y, 1, 'auto', 'rbf')
names = featureNames(sfs_lin)
print(names)

代码开始 运行,但很快就卡住了:

[Parallel(n_jobs=-1)]: Using backend LokyBackend with 8 concurrent workers. [Parallel(n_jobs=-1)]: Done 28 out of 28 | elapsed: 2.5s remaining: 0.0s [Parallel(n_jobs=-1)]: Done 28 out of 28 | elapsed: 2.5s finished

[2021-01-24 00:01:57] Features: 1/28 -- score: 0.6146428161908037[Parallel(n_jobs=-1)]: Using backend LokyBackend with 8 concurrent workers.

使用rbf内核时,代码运行的很漂亮。如果我通过将 forward 参数设置为 False 来更改函数以执行向后消除,它运行得很好

forward=False,

它运行得很漂亮。在使用线性核进行前向选择时似乎会出现冻结问题。 这是一个愚蠢的错误还是我遗漏了一些微不足道的东西?

系统信息:

Python 3.8.5
scikit-learn 0.24.1
mlxtend 0.18.0

看来这只是一个愚蠢的错误。

切换交叉验证

cv = 10

参数为 9 并运行..