tf.data.experimental.make_csv_dataset: ValueError: `label_name` provided must be one of the columns
tf.data.experimental.make_csv_dataset: ValueError: `label_name` provided must be one of the columns
我正在尝试构建一个数据集以在 Keras 中用于 Kaggle 上的泰坦尼克号示例。
这是我到目前为止所做的:
train_data = pd.read_csv("/kaggle/input/titanic/train.csv")
all_columns = ['PassengerId', 'Survived', 'Pclass', 'Name', 'Sex', 'Age', 'SibSp', 'Parch', 'Ticket', 'Fare', 'Cabin', 'Embarked'] # all the columns names present in the csv
feature_columns = ['Pclass', 'Sex', 'Age', 'SibSp', 'Parch', 'Ticket', 'Fare', 'Cabin', 'Embarked'] # columns that I want to use as features for the training part
train_data = tf.data.experimental.make_csv_dataset(
"/kaggle/input/titanic/train.csv",
batch_size=12,
column_names=all_columns,
select_columns=feature_columns,
label_name='Survived', # name of the 'label' column
na_value="?",
num_epochs=1,
ignore_errors=False)
但是在编译时,我得到这个错误:
495 if label_name is not None and label_name not in column_names:
496 raise ValueError("`label_name` provided must be one of the columns.")
497
498 def filename_to_dataset(filename):
ValueError: label_name
provided must be one of the columns.
但是,正如您所看到的 label_name 值是 'Survived' 并且它存在于 all_columns(还有column_names)
有什么想法吗?
最佳
艾默里克
label_name
必须包含在 select_columns
中
尝试:
train_data = tf.data.experimental.make_csv_dataset(
"/kaggle/input/titanic/train.csv",
batch_size=12,
column_names=all_columns,
select_columns=feature_columns + ['Survived'],
label_name='Survived', # name of the 'label' column
na_value="?",
num_epochs=1,
ignore_errors=False)
我正在尝试构建一个数据集以在 Keras 中用于 Kaggle 上的泰坦尼克号示例。 这是我到目前为止所做的:
train_data = pd.read_csv("/kaggle/input/titanic/train.csv")
all_columns = ['PassengerId', 'Survived', 'Pclass', 'Name', 'Sex', 'Age', 'SibSp', 'Parch', 'Ticket', 'Fare', 'Cabin', 'Embarked'] # all the columns names present in the csv
feature_columns = ['Pclass', 'Sex', 'Age', 'SibSp', 'Parch', 'Ticket', 'Fare', 'Cabin', 'Embarked'] # columns that I want to use as features for the training part
train_data = tf.data.experimental.make_csv_dataset(
"/kaggle/input/titanic/train.csv",
batch_size=12,
column_names=all_columns,
select_columns=feature_columns,
label_name='Survived', # name of the 'label' column
na_value="?",
num_epochs=1,
ignore_errors=False)
但是在编译时,我得到这个错误:
495 if label_name is not None and label_name not in column_names: 496 raise ValueError("`label_name` provided must be one of the columns.") 497 498 def filename_to_dataset(filename):
ValueError:
label_name
provided must be one of the columns.
但是,正如您所看到的 label_name 值是 'Survived' 并且它存在于 all_columns(还有column_names)
有什么想法吗?
最佳
艾默里克
label_name
必须包含在 select_columns
尝试:
train_data = tf.data.experimental.make_csv_dataset(
"/kaggle/input/titanic/train.csv",
batch_size=12,
column_names=all_columns,
select_columns=feature_columns + ['Survived'],
label_name='Survived', # name of the 'label' column
na_value="?",
num_epochs=1,
ignore_errors=False)