为什么这种模拟退火算法应用于TSP不收敛?
Why is this simulated annealing algorithm applied to the TSP not converging?
作为一个练习,我必须找到这个旅行商问题的最优解,唯一不同的是旅行商可能不会访问第一个坐标两次。给出的最佳值应该在 1200 左右。我不明白为什么这不会收敛。另外一个重要的注意事项是使用曼哈顿距离度量而不是欧几里得距离。
def shuffle_coords(coords):
x0 = coords[0]
coords = shuffle(coords[1:])
return np.insert(coords,0,x0,axis = 0)
def distance(x,y):
return abs(x[1] - y[1]) + abs(x[0] - y[0])
这里的坐标是随机打乱的。
def shuffle(array):
df = pd.DataFrame(array)
return df.sample(len(array)).to_numpy()
def path_distance(path):
dist = []
for i in range(1,len(path)):
dist.append(distance(path[i],path[i-1]))
return np.sum(dist)
这里初始化了模拟退火算法。
def SA_distance(path, T_0,T_min, alpha):
T = T_0
dist = path_distance(path)
while T > T_min:
new_path = gen_subtour(path)
diffF = path_distance(new_path) - dist
if diffF < 0:
path = new_path
dist = path_distance(path)
elif np.exp(-(diffF/T)) > random.uniform(0,1):
path = new_path
dist = path_distance(path)
T = T * alpha
print(dist,T)
return dist,path
此处生成随机子路线,同时保持 x0 不变。
def gen_subtour(path):
subset = shuffle(np.delete(path,0,axis =0))
subset = shuffle(path)
if random.uniform(0,1) < 0.5:
subset = np.flipud(subset)
else:
j = random.randint(1,(len(subset)-1))
p = subset[j-1]
q = subset[j]
subset = np.delete(subset,[j-1,j],axis = 0)
subset = np.insert(subset,0,p,axis = 0)
subset = np.insert(subset,len(subset),q,axis = 0)
return np.insert(subset,0,path[0],axis = 0)
def main():
T_0 = 12
T_min = 10**-9
alpha = 0.999
coords = np.array([[375, 375],[161, 190], [186, 169],[185, 124],
[122, 104],[109, 258], [55, 153] ,[120, 49],
[39, 85] ,[59, 250] , [17, 310] ,[179, 265],
[184, 198]])
path , distance = SA_distance(coords,T_0,T_min,alpha)
我已经测试过了,我的第一直觉是 gen_subtour()
效果不佳,可能是改变路线的步骤太多了。
我会尝试不同的版本,看看效果如何。 SA方案似乎运作良好,我认为错误的是提案。
无论如何,这里有一些代码,希望能帮助您更好地进行测试。
我使用 pdist
来预先计算曼哈顿距离,即;
import numpy as np
from scipy.spatial.distance import pdist, cdist, squareform
coords = np.array([[375, 375],[161, 190], [186, 169],[185, 124],
[122, 104],[109, 258], [55, 153] ,[120, 49],
[39, 85] ,[59, 250] , [17, 310] ,[179, 265],
[184, 198]])
Y = pdist(coords, 'cityblock')
distance_matrix = squareform(Y)
nodes_count = coords.shape[0]
并定义开始于
def random_start():
"""
Random start, returns a state
"""
a = np.arange(0,nodes_count)
np.random.shuffle(a)
return a
objective 函数,其中我们有我们没有的版本 return 到原点;
def objective_function( route ):
# uncomment when testing new/modify neighbors
# assert check_all_nodes_visited(route)
return np.sum( distance_matrix[route[1:],route[:-1]] )
我这里有3种建议,基于一条路线;
def random_swap( route ):
"""
Random Swap - a Naive neighbour function
Will only work for small instances of the problem
"""
route_copy = route.copy()
random_indici = np.random.choice( route , 2, replace = False)
route_copy[ random_indici[0] ] = route[ random_indici[1] ]
route_copy[ random_indici[1] ] = route[ random_indici[0] ]
return route_copy
def vertex_insert( route, nodes=1 ):
"""
Vertex Insert Neighbour, inspired by
http://www.sciencedirect.com/science/article/pii/S1568494611000573
"""
route_copy = route.copy()
random_indici = np.random.choice( route , 2, replace = False)
index_of_point_to_reroute = random_indici[0]
value_of_point_to_reroute = route[ random_indici[0] ]
index_of_new_place = random_indici[1]
route_copy = np.delete(route_copy, index_of_point_to_reroute)
route_copy = np.insert(route_copy, index_of_new_place, values=value_of_point_to_reroute)
return route_copy
def block_reverse( route, nodes=1 ):
"""
Block Reverse Neighbour, inspired by
http://www.sciencedirect.com/science/article/pii/S1568494611000573
Note that this is a random 2-opt operation.
"""
route_copy = route.copy()
random_indici = np.random.choice( route , 2, replace = False)
index_of_cut_left = np.min(random_indici)
index_of_cut_right = np.max(random_indici)
route_copy[ index_of_cut_left:index_of_cut_right ] = np.flip(route_copy[ index_of_cut_left:index_of_cut_right ])
return route_copy
您可以选择在 SA 之后进行 2-opt 回合,以确保没有交叉。
def swap_for_2opt( route, i, k):
"""
Helper for 2-opt search
"""
route_copy = route.copy()
index_of_cut_left = i
index_of_cut_right = k
route_copy[ index_of_cut_left:index_of_cut_right ] = np.flip(route_copy[ index_of_cut_left:index_of_cut_right ])
return route_copy
def local_search_2opt( route ):
"""
Local Optimum with 2-opt
https://en.wikipedia.org/wiki/2-opt
"""
steps_since_improved = 0
still_improving = True
route = route.copy()
while still_improving :
for i in range( route.size - 1 ):
for k in np.arange( i + 1, route.size ):
alt_route = swap_for_2opt(route, i, k)
if objective_function(alt_route) < objective_function(route):
route = alt_route.copy()
steps_since_improved = 0
steps_since_improved += 1
if steps_since_improved > route.size + 1:
still_improving = False
break
return route
并为 SA 使用 frigidum
import frigidum
local_opt = frigidum.sa(random_start=random_start,
objective_function=objective_function,
neighbours=[random_swap, vertex_insert, block_reverse],
copy_state=frigidum.annealing.naked,
T_start=10**5,
alpha=.95,
T_stop=0.001,
repeats=10**2,
post_annealing = local_search_2opt)
returned 路线几乎总是 1145。
我已经在 frigidum 主页上发布了一般提示和技巧。
作为一个练习,我必须找到这个旅行商问题的最优解,唯一不同的是旅行商可能不会访问第一个坐标两次。给出的最佳值应该在 1200 左右。我不明白为什么这不会收敛。另外一个重要的注意事项是使用曼哈顿距离度量而不是欧几里得距离。
def shuffle_coords(coords):
x0 = coords[0]
coords = shuffle(coords[1:])
return np.insert(coords,0,x0,axis = 0)
def distance(x,y):
return abs(x[1] - y[1]) + abs(x[0] - y[0])
这里的坐标是随机打乱的。
def shuffle(array):
df = pd.DataFrame(array)
return df.sample(len(array)).to_numpy()
def path_distance(path):
dist = []
for i in range(1,len(path)):
dist.append(distance(path[i],path[i-1]))
return np.sum(dist)
这里初始化了模拟退火算法。
def SA_distance(path, T_0,T_min, alpha):
T = T_0
dist = path_distance(path)
while T > T_min:
new_path = gen_subtour(path)
diffF = path_distance(new_path) - dist
if diffF < 0:
path = new_path
dist = path_distance(path)
elif np.exp(-(diffF/T)) > random.uniform(0,1):
path = new_path
dist = path_distance(path)
T = T * alpha
print(dist,T)
return dist,path
此处生成随机子路线,同时保持 x0 不变。
def gen_subtour(path):
subset = shuffle(np.delete(path,0,axis =0))
subset = shuffle(path)
if random.uniform(0,1) < 0.5:
subset = np.flipud(subset)
else:
j = random.randint(1,(len(subset)-1))
p = subset[j-1]
q = subset[j]
subset = np.delete(subset,[j-1,j],axis = 0)
subset = np.insert(subset,0,p,axis = 0)
subset = np.insert(subset,len(subset),q,axis = 0)
return np.insert(subset,0,path[0],axis = 0)
def main():
T_0 = 12
T_min = 10**-9
alpha = 0.999
coords = np.array([[375, 375],[161, 190], [186, 169],[185, 124],
[122, 104],[109, 258], [55, 153] ,[120, 49],
[39, 85] ,[59, 250] , [17, 310] ,[179, 265],
[184, 198]])
path , distance = SA_distance(coords,T_0,T_min,alpha)
我已经测试过了,我的第一直觉是 gen_subtour()
效果不佳,可能是改变路线的步骤太多了。
我会尝试不同的版本,看看效果如何。 SA方案似乎运作良好,我认为错误的是提案。
无论如何,这里有一些代码,希望能帮助您更好地进行测试。
我使用 pdist
来预先计算曼哈顿距离,即;
import numpy as np
from scipy.spatial.distance import pdist, cdist, squareform
coords = np.array([[375, 375],[161, 190], [186, 169],[185, 124],
[122, 104],[109, 258], [55, 153] ,[120, 49],
[39, 85] ,[59, 250] , [17, 310] ,[179, 265],
[184, 198]])
Y = pdist(coords, 'cityblock')
distance_matrix = squareform(Y)
nodes_count = coords.shape[0]
并定义开始于
def random_start():
"""
Random start, returns a state
"""
a = np.arange(0,nodes_count)
np.random.shuffle(a)
return a
objective 函数,其中我们有我们没有的版本 return 到原点;
def objective_function( route ):
# uncomment when testing new/modify neighbors
# assert check_all_nodes_visited(route)
return np.sum( distance_matrix[route[1:],route[:-1]] )
我这里有3种建议,基于一条路线;
def random_swap( route ):
"""
Random Swap - a Naive neighbour function
Will only work for small instances of the problem
"""
route_copy = route.copy()
random_indici = np.random.choice( route , 2, replace = False)
route_copy[ random_indici[0] ] = route[ random_indici[1] ]
route_copy[ random_indici[1] ] = route[ random_indici[0] ]
return route_copy
def vertex_insert( route, nodes=1 ):
"""
Vertex Insert Neighbour, inspired by
http://www.sciencedirect.com/science/article/pii/S1568494611000573
"""
route_copy = route.copy()
random_indici = np.random.choice( route , 2, replace = False)
index_of_point_to_reroute = random_indici[0]
value_of_point_to_reroute = route[ random_indici[0] ]
index_of_new_place = random_indici[1]
route_copy = np.delete(route_copy, index_of_point_to_reroute)
route_copy = np.insert(route_copy, index_of_new_place, values=value_of_point_to_reroute)
return route_copy
def block_reverse( route, nodes=1 ):
"""
Block Reverse Neighbour, inspired by
http://www.sciencedirect.com/science/article/pii/S1568494611000573
Note that this is a random 2-opt operation.
"""
route_copy = route.copy()
random_indici = np.random.choice( route , 2, replace = False)
index_of_cut_left = np.min(random_indici)
index_of_cut_right = np.max(random_indici)
route_copy[ index_of_cut_left:index_of_cut_right ] = np.flip(route_copy[ index_of_cut_left:index_of_cut_right ])
return route_copy
您可以选择在 SA 之后进行 2-opt 回合,以确保没有交叉。
def swap_for_2opt( route, i, k):
"""
Helper for 2-opt search
"""
route_copy = route.copy()
index_of_cut_left = i
index_of_cut_right = k
route_copy[ index_of_cut_left:index_of_cut_right ] = np.flip(route_copy[ index_of_cut_left:index_of_cut_right ])
return route_copy
def local_search_2opt( route ):
"""
Local Optimum with 2-opt
https://en.wikipedia.org/wiki/2-opt
"""
steps_since_improved = 0
still_improving = True
route = route.copy()
while still_improving :
for i in range( route.size - 1 ):
for k in np.arange( i + 1, route.size ):
alt_route = swap_for_2opt(route, i, k)
if objective_function(alt_route) < objective_function(route):
route = alt_route.copy()
steps_since_improved = 0
steps_since_improved += 1
if steps_since_improved > route.size + 1:
still_improving = False
break
return route
并为 SA 使用 frigidum
import frigidum
local_opt = frigidum.sa(random_start=random_start,
objective_function=objective_function,
neighbours=[random_swap, vertex_insert, block_reverse],
copy_state=frigidum.annealing.naked,
T_start=10**5,
alpha=.95,
T_stop=0.001,
repeats=10**2,
post_annealing = local_search_2opt)
returned 路线几乎总是 1145。
我已经在 frigidum 主页上发布了一般提示和技巧。