根据具有预分配唯一标识符的数据框为数据框行分配唯一标识符

Assign unique identifier for dataframe rows based on dataframe with preassigned unique identifier

我的数据框具有基于三列分配的唯一标识符,即 [col2,col3,col3]

数据框 1:

col1      col2     col3     col4      col5         unique_id
1         abc       bcv      zxc      www.com        8
2         bcd       qwe      rty      www.@com       12
3         klp       oiu      ytr      www.io         15
4         zxc       qwe      rty      www.com        6

数据预处理后,将导入 Dataframe_2,其列值与上面所示相同,但​​没有 unique_id。 Dataframe_2 行必须根据 col2、col3、col4 并参考 Dataframe1 分配唯一标识符。

如果 Dataframe_2 有 Dataframe1 中不存在的新行,则分配新的标识符。

Dataframe_2:

col1      col2     col3     col4      col5         
1         bcd       qwe      rty      www.@com              
2         zxc       qwe      rty      www.com
3         abc       bcv      zxc      www.com 
4         kph       hir      mat      www.com            

预计 Dataframe_2:

col1      col2     col3     col4      col5         unique_id        
1         bcd       qwe      rty      www.@com        12     
2         zxc       qwe      rty      www.com         6
3         abc       bcv      zxc      www.com         8 
4         kph       hir      mat      www.com         35

由于 Dataframe1 中不存在 Row4,因此分配了一个新的唯一标识符。

首先通过 DataFrame.merge with left join on parameter is omitted for merge by columns ['col2','col3','col4'] specified in subset. For not matched values are created missing values, so is used Series.isna for test them and np.arange for create new array after maximal value and assign them in DataFrame.loc

添加列 unique_id
df = Dataframe_2.merge(Dataframe_1[['col2','col3','col4', 'unique_id']],
                       how='left')

mask = df['unique_id'].isna()
maximal = Dataframe_1['unique_id'].max() + 1

df.loc[mask, 'unique_id'] = np.arange(maximal, maximal + mask.sum())

df['unique_id'] = df['unique_id'].astype(int)
print (df)
   col1 col2 col3 col4      col5  unique_id
0     1  bcd  qwe  rty  www.@com         12
1     2  zxc  qwe  rty   www.com          6
2     3  abc  bcv  zxc   www.com          8
3     4  kph  hir  mat   www.com         16
# assign the old unique_id
df2n = df2.join(df1.set_index(['col2', 'col3', 'col4', 'col5'])[['unique_id']],
         on=['col2', 'col3', 'col4', 'col5'], how='left')

# assign new unique_id with max df1.unique_id + 1
id_max = df1.unique_id.max() + 1
null_num = df2n['unique_id'].isnull().sum()

cond = df2n['unique_id'].isnull()
df2n.loc[cond,'unique_id'] = range(id_max, id_max + null_num)
df2n['unique_id'] = df2n['unique_id'].astype(int)

print(df2n)

      col1 col2 col3 col4      col5  unique_id
    0     1  bcd  qwe  rty  www.@com         12
    1     2  zxc  qwe  rty   www.com          6
    2     3  abc  bcv  zxc   www.com          8
    3     4  kph  hir  mat   www.com         16
import math
import random
import pandas as pd
import numpy as np

df3 = pd.merge(df1,df2, on=['col2','col3','col4'], how='right')

def return_unique_num(df1):
  uniqueIds = list(df1['unique_id'].values)
  unique_num = random.randint(1,len(df1)+1)
  while True:
    if unique_num in uniqueIds:
      unique_num = random.randint(1,len(df1)+1)
    else:
      break
  return unique_num

for i, e in enumerate(df3['unique_id']):
  if math.isnan(e):
    df3.iloc[i, 5] = return_unique_num(df1) #replace nan value with unique integer in df3 unique_id column


df3['unique_id'] = df3['unique_id'].astype(int)

df2['unique_id'] = df3['unique_id']

它将根据 df1

的 unique_id 为 df2 分配唯一 ID

输出

col1      col2     col3     col4      col5         unique_id        
1         bcd       qwe      rty      www.@com        12     
2         zxc       qwe      rty      www.com         6
3         abc       bcv      zxc      www.com         8 
4         kph       hir      mat      www.com         35