R 中的逻辑回归错误:无法强制 'list' 对象键入 'double'
Error in logistic regression in R: 'list' object cannot be coerced to type 'double'
我正在尝试使用转换为数据帧的已加载 CSV 文件在 Rstudio 中执行逻辑回归。我有一个因变量(result
)和9个自变量,它们都在数据框中的10 columns
中。
sapply(mydata, mode)
> result cat1 cat2 cat3 cat4 cat5 cat6 cat7 cat8 cat9
> "numeric" "numeric" "numeric" "numeric" "numeric" "numeric" "numeric" "numeric" "numeric" "numeric"
sapply(mydata, class)
> result cat1 cat2 cat3 cat4 cat5 cat6 cat7 cat8 cat9
> "numeric" "integer" "integer" "numeric" "numeric" "numeric" "numeric" "numeric" "numeric" "factor"
model1 <- glm(formula = result ~ cat3 + cat4 + cat5 + cat6 + cat7 + cat8,
data = mydata,
family = "binomial")
model1.pred <- ifelse(model1 > 0.5, "Win", "Loss")
> Error in ifelse(win2 > 0.5, "Win", "Loss") :
> 'list' object cannot be coerced to type 'double'
即使我的模型中使用的所有变量都是数字,是否有人能够帮助解释为什么会出现此错误?
谢谢!
你无法将 model1
与 0.5
进行比较
这是 model1 结构:
model1
Call: glm(formula = id ~ speed + dist, family = "binomial", data = cars)
Coefficients:
(Intercept) speed dist
-1158.863 73.588 1.366
Degrees of Freedom: 49 Total (i.e. Null); 47 Residual
Null Deviance: 69.31
Residual Deviance: 2.932e-08 AIC: 6
您必须将新数据传递给模型,然后将预测值(使用函数 predict
)与 0.5
进行比较
我正在尝试使用转换为数据帧的已加载 CSV 文件在 Rstudio 中执行逻辑回归。我有一个因变量(result
)和9个自变量,它们都在数据框中的10 columns
中。
sapply(mydata, mode)
> result cat1 cat2 cat3 cat4 cat5 cat6 cat7 cat8 cat9
> "numeric" "numeric" "numeric" "numeric" "numeric" "numeric" "numeric" "numeric" "numeric" "numeric"
sapply(mydata, class)
> result cat1 cat2 cat3 cat4 cat5 cat6 cat7 cat8 cat9
> "numeric" "integer" "integer" "numeric" "numeric" "numeric" "numeric" "numeric" "numeric" "factor"
model1 <- glm(formula = result ~ cat3 + cat4 + cat5 + cat6 + cat7 + cat8,
data = mydata,
family = "binomial")
model1.pred <- ifelse(model1 > 0.5, "Win", "Loss")
> Error in ifelse(win2 > 0.5, "Win", "Loss") :
> 'list' object cannot be coerced to type 'double'
即使我的模型中使用的所有变量都是数字,是否有人能够帮助解释为什么会出现此错误? 谢谢!
你无法将 model1
与 0.5
这是 model1 结构:
model1
Call: glm(formula = id ~ speed + dist, family = "binomial", data = cars)
Coefficients:
(Intercept) speed dist
-1158.863 73.588 1.366
Degrees of Freedom: 49 Total (i.e. Null); 47 Residual
Null Deviance: 69.31
Residual Deviance: 2.932e-08 AIC: 6
您必须将新数据传递给模型,然后将预测值(使用函数 predict
)与 0.5