Pytorch 上的一维 CNN:mat1 和 mat2 形状不能相乘(10x3 和 10x2)

1D CNN on Pytorch: mat1 and mat2 shapes cannot be multiplied (10x3 and 10x2)

我有一个包含 500 个样本和 2 种标签的时间序列,我想构建一个带有 pytorch 的一维 CNN:

class Simple1DCNN(torch.nn.Module):
    def __init__(self):
        super(Simple1DCNN, self).__init__()
        self.layer1 = torch.nn.Conv1d(in_channels=50, 
                                      out_channels=20, 
                                      kernel_size=5, 
                                      stride=2)
        self.act1 = torch.nn.ReLU()
        self.layer2 = torch.nn.Conv1d(in_channels=20, 
                                      out_channels=10, 
                                      kernel_size=1)
        
        self.fc1 = nn.Linear(10* 1 * 1, 2)
    def forward(self, x):
        x = x.view(1, 50,-1)
        x = self.layer1(x)
        x = self.act1(x)
        x = self.layer2(x)
        x = self.fc1(x)
        
        return x

model = Simple1DCNN()
model(torch.tensor(np.random.uniform(-10, 10, 500)).float())

但收到此错误消息:

Traceback (most recent call last):
  File "so_pytorch.py", line 28, in <module>
    model(torch.tensor(np.random.uniform(-10, 10, 500)).float())
  File "/Users/lib/python3.8/site-packages/torch/nn/modules/module.py", line 727, in _call_impl
    result = self.forward(*input, **kwargs)
  File "so_pytorch.py", line 23, in forward
    x = self.fc1(x)
  File "/Users/lib/python3.8/site-packages/torch/nn/modules/module.py", line 727, in _call_impl
    result = self.forward(*input, **kwargs)
  File "/Users/lib/python3.8/site-packages/torch/nn/modules/linear.py", line 93, in forward
    return F.linear(input, self.weight, self.bias)
  File "/Users/lib/python3.8/site-packages/torch/nn/functional.py", line 1692, in linear
    output = input.matmul(weight.t())
RuntimeError: mat1 and mat2 shapes cannot be multiplied (10x3 and 10x2)

我做错了什么?

x = self.layer2(x)(也是下一行x = self.fc1(x)的输入)的输出形状为torch.Size([1, 10, 3]).

现在根据 self.fc1 的定义,它期望输入的最后一个维度为 10 * 1 * 1,即 10,而您的输入有 3,因此出现错误.

我不知道你想做什么,但假设你想做的是;

  1. 将整个 500 大小序列标记为两个标签之一,您可以这样做。
# replace self.fc1 = nn.Linear(10* 1 * 1, 2) with
self.fc1 = nn.Linear(10 * 3, 2)

# replace x = self.fc1(x) with
x = x.view(1, -1)
x = self.fc1(x)
  1. label 10 timesteps 每个到两个标签之一,然后你这样做。
# replace self.fc1 = nn.Linear(10* 1 * 1, 2) with
self.fc1 = nn.Linear(2, 2)

1 的输出形状为(批量大小,2),2 的输出形状为(批量大小,10, 2).