从数值特征中去除异常值
removing outliers from numerical features
嗨,我正在尝试从具有数字特征的列中删除异常值,但是当我执行我的代码时,整个数据集都被删除了,请问任何人都可以告诉我我做错了什么吗
numerical_columns = data.select_dtypes(include=['int64','float64']).columns.tolist()
print('Number of rows before discarding outlier = %d' % (data.shape[0]))
for i in numerical_columns:
q1 = data[i].quantile(0.25)
q3 = data[i].quantile(0.75)
iqr = q3-q1 #Interquartile range
fence_low = q1-1.5*iqr
fence_high = q3+1.5*iqr
data = data.loc[(data[i] > fence_low) & (data[i] < fence_high)]
print('Number of rows after discarding outlier = %d' % (data.shape[0]))
下面的代码对我有用。这里 col 是数据框的数字列,您需要为其删除异常值
#Remove Outliers: keep only the ones that are within +3 to -3
# standard deviations in the column
df = df[np.abs(df[col]-df[col].mean()) <= (3*df[col].std())]
嗨,我正在尝试从具有数字特征的列中删除异常值,但是当我执行我的代码时,整个数据集都被删除了,请问任何人都可以告诉我我做错了什么吗
numerical_columns = data.select_dtypes(include=['int64','float64']).columns.tolist()
print('Number of rows before discarding outlier = %d' % (data.shape[0]))
for i in numerical_columns:
q1 = data[i].quantile(0.25)
q3 = data[i].quantile(0.75)
iqr = q3-q1 #Interquartile range
fence_low = q1-1.5*iqr
fence_high = q3+1.5*iqr
data = data.loc[(data[i] > fence_low) & (data[i] < fence_high)]
print('Number of rows after discarding outlier = %d' % (data.shape[0]))
下面的代码对我有用。这里 col 是数据框的数字列,您需要为其删除异常值
#Remove Outliers: keep only the ones that are within +3 to -3
# standard deviations in the column
df = df[np.abs(df[col]-df[col].mean()) <= (3*df[col].std())]