Python: pandas 3d 数据帧到 X,Y,Z
Python: pandas 3d dataframe into X,Y,Z
我的 csv 数据由 pd.read_csv
(https://www.pkks.de/contourN.dat) 读取:
0 1 2
0 -3.0 -3.00000 -0.001395
1 -3.0 -2.97647 -0.001410
2 -3.0 -2.95294 -0.001421
3 -3.0 -2.92941 -0.001426
4 -3.0 -2.90588 -0.001427
... ... ... ...
65531 3.0 2.90588 -0.001427
65532 3.0 2.92941 -0.001426
65533 3.0 2.95294 -0.001421
65534 3.0 2.97647 -0.001410
65535 3.0 3.00000 -0.001395
表示(x,y,z)坐标。我必须如何将这些数据转换为 X, Y, Z
变量才能
使用 matplotlib 绘制曲面:
ax.plot_surface(X, Y, Z, ...)
import pandas as pd
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D
data = pd.read_csv('your_file.csv', sep=',', names=['X', 'Y', 'Z'], index_col=False)
x_num = len(data['X'].unique())
y_num = len(data['Y'].unique())
x = data['X'].values.reshape(x_num, -1)
y = data['Y'].values.reshape(y_num, -1)
z = data['Z'].values.reshape((x_num, y_num))
fig = plt.figure()
ax = fig.gca(projection='3d')
surf = ax.plot_surface(x, y, z)
我的 csv 数据由 pd.read_csv
(https://www.pkks.de/contourN.dat) 读取:
0 1 2
0 -3.0 -3.00000 -0.001395
1 -3.0 -2.97647 -0.001410
2 -3.0 -2.95294 -0.001421
3 -3.0 -2.92941 -0.001426
4 -3.0 -2.90588 -0.001427
... ... ... ...
65531 3.0 2.90588 -0.001427
65532 3.0 2.92941 -0.001426
65533 3.0 2.95294 -0.001421
65534 3.0 2.97647 -0.001410
65535 3.0 3.00000 -0.001395
表示(x,y,z)坐标。我必须如何将这些数据转换为 X, Y, Z
变量才能
使用 matplotlib 绘制曲面:
ax.plot_surface(X, Y, Z, ...)
import pandas as pd
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D
data = pd.read_csv('your_file.csv', sep=',', names=['X', 'Y', 'Z'], index_col=False)
x_num = len(data['X'].unique())
y_num = len(data['Y'].unique())
x = data['X'].values.reshape(x_num, -1)
y = data['Y'].values.reshape(y_num, -1)
z = data['Z'].values.reshape((x_num, y_num))
fig = plt.figure()
ax = fig.gca(projection='3d')
surf = ax.plot_surface(x, y, z)