静态最终字段与 TrustFinalNonStaticFields

static final fields vs TrustFinalNonStaticFields

假设我有这个简单的方法:

static final Integer me = Integer.parseInt("2");

static int go() {
    return me * 2;
}

对于 javac,me 不是常量(根据 JLS 规则),但对于 JIT 很可能是。

我尝试用以下方法进行测试:

 public class StaticFinal {

    public static void main(String[] args) {
        int hash = 0;
        for(int i=0;i<1000_000;++i){
            hash = hash ^ go();
        }
        System.out.println(hash);
    }

    static final Integer me = Integer.parseInt("2");

    static int go() {
        return me * 2;
    }
}

并且 运行将其与:

  java -XX:+UnlockDiagnosticVMOptions 
       -XX:-TieredCompilation  
       "-XX:CompileCommand=print,StaticFinal.go"  
       -XX:PrintAssemblyOptions=intel  
       StaticFinal.java

我不知道汇编很好,但这很明显:

mov    eax,0x4

go 的结果立即是 4,即:JIT“信任”me 是一个常量,因此 2 * 2 = 4

如果我删除 static 并将代码更改为:

public class NonStaticFinal {

    static NonStaticFinal instance = new NonStaticFinal();

    public static void main(String[] args) {
        int hash = 0;
        for(int i=0;i<1000_000;++i){
            hash = hash ^ instance.go();
        }
        System.out.println(hash);
    }

    final Integer me = Integer.parseInt("2");

    int go() {
        return me * 2;
    }
}

和 运行 与:

java -XX:+UnlockDiagnosticVMOptions 
     -XX:-TieredCompilation  
     "-XX:CompileCommand=print,NonStaticFinal.go"  
     -XX:PrintAssemblyOptions=intel  
     NonStaticFinal.java

我确实在汇编中看到:

shl    eax,1

实际上是 me2 的乘积,通过移位完成。所以 JIT 不相信 me 是一个常量,这是意料之中的。

现在是问题。我认为如果我添加 TrustFinalNonStaticFields 标志,我会看到相同的 mov eax 0x4,即:运行:

 java -XX:+UnlockDiagnosticVMOptions 
      -XX:-TieredCompilation  
      "-XX:CompileCommand=print,NonStaticFinal.go"  
      -XX:+UnlockExperimentalVMOptions 
      -XX:+TrustFinalNonStaticFields 
      -XX:PrintAssemblyOptions=intel  
      NonStaticFinal.java

应该显示 mov eax,0x4,但令我惊讶的是它没有,代码保持为:

shl    eax,1

有人可以解释发生了什么以及我缺少什么吗?

TrustFinalNonStaticFields 允许折叠来自常量对象的 final 实例字段。但是,在您的示例中, instance 字段不是常量,因此折叠 me 字段的负载是不正确的,因为 instance 对象在编译后的某个时刻可能仍会更改。

此外,您正在打印 go 方法的程序集,其中 this 如果该方法是单独编译的,则不会被视为常量。要查看 TrustFinalNonStaticFields 的效果,您需要查看 go 方法的内联版本的程序集,其中接收者是常量。例如:

 public class NonStaticFinal {

    static final NonStaticFinal instance = new NonStaticFinal();

    public static void main(String[] args) {
        for (int i = 0; i < 20_000; i++) { // trigger compilation of 'payload'
            payload();
        }
    }
    
    static int payload() {
        return instance.go();
    }

    final Integer me = Integer.parseInt("2");

    int go() {
        return me * 2;
    }

}

运行:

java 
  -XX:+UnlockDiagnosticVMOptions 
  -XX:-TieredCompilation
  "-XX:CompileCommand=print,NonStaticFinal.payload"
  "-XX:CompileCommand=dontinline,NonStaticFinal.payload"
  -XX:+UnlockExperimentalVMOptions
  -XX:+TrustFinalNonStaticFields
  -XX:PrintAssemblyOptions=intel
  -Xbatch
  NonStaticFinal.java

生成程序集,我们可以看到 me 字段的加载 + 乘法正在 payload 方法中折叠:

  # {method} {0x0000016238c59470} 'payload' '()I' in 'NonStaticFinal'
  #           [sp+0x20]  (sp of caller)
  // set up frame
  0x00000162283d2500:   sub     rsp,18h
  0x00000162283d2507:   mov     qword ptr [rsp+10h],rbp     ;*synchronization entry
                                                            ; - NonStaticFinal::payload@-1 (line 12)
  // load a constant 4
  0x00000162283d250c:   mov     eax,4h     <-------------
  // clean up frame
  0x00000162283d2511:   add     rsp,10h
  0x00000162283d2515:   pop     rbp
  // safepoint poll
  0x00000162283d2516:   mov     r10,qword ptr [r15+110h]
  0x00000162283d251d:   test    dword ptr [r10],eax         ;   {poll_return}
  // return
  0x00000162283d2520:   ret

与禁用 TFNSF 的版本相比,me 字段的加载仍然发生:

  # {method} {0x00000245f9669470} 'payload' '()I' in 'NonStaticFinal'
  #           [sp+0x20]  (sp of caller)
  // stack bang
  0x00000245e8d52a00:   mov     dword ptr [rsp+0ffffffffffff9000h],eax
  // set up frame
  0x00000245e8d52a07:   push    rbp
  0x00000245e8d52a08:   sub     rsp,10h                     ;*synchronization entry
                                                            ; - NonStaticFinal::payload@-1 (line 12)
  // load the 'instance' field. It's a constant, so the address here is constant
  0x00000245e8d52a0c:   mov     r10,70ff107a8h              ;   {oop(a 'NonStaticFinal'{0x000000070ff107a8})}
  // load the (compressed) oop 'me' field at 0ch (first field after the object header)
  0x00000245e8d52a16:   mov     r11d,dword ptr [r10+0ch]    ;*getfield me {reexecute=0 rethrow=0 return_oop=0}
                                                            ; - NonStaticFinal::go@1 (line 18)
                                                            ; - NonStaticFinal::payload@3 (line 12)
  // Load the 'value' field from the Integer object.
  // r12 is the heap base, r11 the compressed oop 'Integer', *8 here to uncompress it,
  // and again loading the first field after the header at 0ch
  0x00000245e8d52a1a:   mov     eax,dword ptr [r12+r11*8+0ch]; implicit exception: dispatches to 0x00000245e8d52a31
  // multiply by 2
  // ABI returns ints in the 'eax' register, so no need to shuffle afterwards
  0x00000245e8d52a1f:   shl     eax,1h                      ;*imul {reexecute=0 rethrow=0 return_oop=0}
                                                            ; - NonStaticFinal::go@8 (line 18)
                                                            ; - NonStaticFinal::payload@3 (line 12)
  // clean up frame
  0x00000245e8d52a21:   add     rsp,10h
  0x00000245e8d52a25:   pop     rbp
  // safepoint poll
  0x00000245e8d52a26:   mov     r10,qword ptr [r15+110h]
  0x00000245e8d52a2d:   test    dword ptr [r10],eax         ;   {poll_return}
  // return
  0x00000245e8d52a30:   ret