如何找到椭圆内的点?
How to find point inside an ellipse?
我正在寻找椭圆内的点。它不是 'ordinary' 椭圆,它实际上是基于平均值和标准差的,这比计算特征值更容易找到置信区间
函数不是我写的,这里是源码
https://matplotlib.org/devdocs/gallery/statistics/confidence_ellipse.html
https://carstenschelp.github.io/2018/09/14/Plot_Confidence_Ellipse_001.html
代码如下:
import numpy as np
import matplotlib.pyplot as plt
from matplotlib.patches import Ellipse
import matplotlib.transforms as transforms
x = np.array([21.5,16.3,13.7,20.0,17.4,10.4,16.9,7.0,13.8,15.2,13.8,8.2,18.0,9.4,13.2,7.2,21.2,30.2,13.5,29.8,18.3,20.2,31.1,21.5,29.8,18.0,13.1,24.1,32.5,15.4,16.1,15.0,25.9,3.0,17.0,23.6,17.6,-11.8,22.2,26.6,17.8,20.6,23.0,28.0,25.3,22.1,22.4,16.3,22.0,12.1])
y = np.array([92.4,98.2,97.6,95.9,96.5,92.1,89.6,89.4,89.2,89.4,90.2,86.7,89.5,89.9,90.2,87.6,104.0,87.3,99.4,85.4,92.8,92.0,87.9,96.2,94.1,95.2,95.6,86.3,87.6,89.5,95.0,97.1,93.0,87.8,98.9,98.2,100.1,45.4,92.1,91.6,94.7,93.9,91.4,91.1,95.7,93.8,96.4,94.1,94.0,89.1])
#function obtained from matplotlib documentation
#https://matplotlib.org/devdocs/gallery/statistics/confidence_ellipse.html
def confidence_ellipse(x, y, ax, n_std=3.0, facecolor='none', **kwargs):
"""
Create a plot of the covariance confidence ellipse of *x* and *y*.
Parameters
----------
x, y : array-like, shape (n, )
Input data.
ax : matplotlib.axes.Axes
The axes object to draw the ellipse into.
n_std : float
The number of standard deviations to determine the ellipse's radiuses.
**kwargs
Forwarded to `~matplotlib.patches.Ellipse`
Returns
-------
matplotlib.patches.Ellipse
"""
if x.size != y.size:
raise ValueError("x and y must be the same size")
cov = np.cov(x, y)
pearson = cov[0, 1]/np.sqrt(cov[0, 0] * cov[1, 1])
# Using a special case to obtain the eigenvalues of this
# two-dimensionl dataset.
ell_radius_x = np.sqrt(1 + pearson)
ell_radius_y = np.sqrt(1 - pearson)
ellipse = Ellipse((0, 0), width=ell_radius_x * 2, height=ell_radius_y * 2,
facecolor=facecolor, **kwargs)
# Calculating the stdandard deviation of x from
# the squareroot of the variance and multiplying
# with the given number of standard deviations.
scale_x = np.sqrt(cov[0, 0]) * n_std
mean_x = np.mean(x)
# calculating the stdandard deviation of y ...
scale_y = np.sqrt(cov[1, 1]) * n_std
mean_y = np.mean(y)
transf = transforms.Affine2D() \
.rotate_deg(45) \
.scale(scale_x, scale_y) \
.translate(mean_x, mean_y)
ellipse.set_transform(transf + ax.transData)
return ax.add_patch(ellipse)
#implementation
fig, ax = plt.subplots(1, 1, figsize=(8, 4))
ax.scatter(x,y,s=5)
ellipse = confidence_ellipse(x,y,ax,n_std=2,edgecolor='red')
plt.show()
后来我试着找到中心坐标和椭圆内的点,如下所示:
ellipse.get_center()
Out:(0,0)
ellipse.contains_point([21.5,92.4])#first points in x,y arrays
Out:False
ellipse.contains_point([0,0])#get_center() result
Out:False
椭圆图工作正常,但我需要椭圆内的每个点坐标。
我做错了什么?我已经检查过类似的问题,但它们也没有用。
您可以在绘图上绘制所有 x,y
标签。
import numpy as np
import matplotlib.pyplot as plt
from matplotlib.patches import Ellipse
import matplotlib.transforms as transforms
x = np.array([21.5,16.3,13.7,20.0,17.4,10.4,16.9,7.0,13.8,15.2,13.8,8.2,18.0,9.4,13.2,7.2,21.2,30.2,13.5,29.8,18.3,20.2,31.1,21.5,29.8,18.0,13.1,24.1,32.5,15.4,16.1,15.0,25.9,3.0,17.0,23.6,17.6,-11.8,22.2,26.6,17.8,20.6,23.0,28.0,25.3,22.1,22.4,16.3,22.0,12.1])
y = np.array([92.4,98.2,97.6,95.9,96.5,92.1,89.6,89.4,89.2,89.4,90.2,86.7,89.5,89.9,90.2,87.6,104.0,87.3,99.4,85.4,92.8,92.0,87.9,96.2,94.1,95.2,95.6,86.3,87.6,89.5,95.0,97.1,93.0,87.8,98.9,98.2,100.1,45.4,92.1,91.6,94.7,93.9,91.4,91.1,95.7,93.8,96.4,94.1,94.0,89.1])
#function obtained from matplotlib documentation
#https://matplotlib.org/devdocs/gallery/statistics/confidence_ellipse.html
def confidence_ellipse(x, y, ax, n_std=3.0, facecolor='none', **kwargs):
"""
Create a plot of the covariance confidence ellipse of *x* and *y*.
Parameters
----------
x, y : array-like, shape (n, )
Input data.
ax : matplotlib.axes.Axes
The axes object to draw the ellipse into.
n_std : float
The number of standard deviations to determine the ellipse's radiuses.
**kwargs
Forwarded to `~matplotlib.patches.Ellipse`
Returns
-------
matplotlib.patches.Ellipse
"""
if x.size != y.size:
raise ValueError("x and y must be the same size")
cov = np.cov(x, y)
pearson = cov[0, 1]/np.sqrt(cov[0, 0] * cov[1, 1])
# Using a special case to obtain the eigenvalues of this
# two-dimensionl dataset.
ell_radius_x = np.sqrt(1 + pearson)
ell_radius_y = np.sqrt(1 - pearson)
ellipse = Ellipse((0, 0), width=ell_radius_x * 2, height=ell_radius_y * 2,
facecolor=facecolor, **kwargs)
# Calculating the stdandard deviation of x from
# the squareroot of the variance and multiplying
# with the given number of standard deviations.
scale_x = np.sqrt(cov[0, 0]) * n_std
mean_x = np.mean(x)
# calculating the stdandard deviation of y ...
scale_y = np.sqrt(cov[1, 1]) * n_std
mean_y = np.mean(y)
transf = transforms.Affine2D() \
.rotate_deg(45) \
.scale(scale_x, scale_y) \
.translate(mean_x, mean_y)
ellipse.set_transform(transf + ax.transData)
return ax.add_patch(ellipse)
#implementation
fig, ax = plt.subplots(1, 1, figsize=(12, 8))
ax.scatter(x,y,s=15)
ellipse = confidence_ellipse(x,y,ax,n_std=2,edgecolor='red')
# zip joins x and y coordinates in pairs
for x,y in zip(x,y):
label = f"({x},{y})"
#label = "{:.2f}".format(y) # plot just y-value of the point
# print(label) # uncomment if you want to print the points for reference
plt.annotate(label, # this is the text
(x,y), # this is the point to label
textcoords="offset points", # how to position the text
xytext=(0,10), # distance from text to points (x,y)
ha='center') # horizontal alignment can be left, right or center
plt.show()
P.S. :您需要相应地调整您的 xytext
。这就是这个 label
在图中绘制的点。
您也可以print
这些值供您参考。只需输入 print(label)
,它就会为您打印出所有的分数。
(21.5,92.4)
(16.3,98.2)
(13.7,97.6)
(20.0,95.9)
(17.4,96.5)
(10.4,92.1)
(16.9,89.6)
(7.0,89.4)
(13.8,89.2)
(15.2,89.4)
(13.8,90.2)
(8.2,86.7)
(18.0,89.5)
(9.4,89.9)
(13.2,90.2)
(7.2,87.6)
(21.2,104.0)
(30.2,87.3)
(13.5,99.4)
(29.8,85.4)
(18.3,92.8)
(20.2,92.0)
(31.1,87.9)
(21.5,96.2)
(29.8,94.1)
(18.0,95.2)
(13.1,95.6)
(24.1,86.3)
(32.5,87.6)
(15.4,89.5)
(16.1,95.0)
(15.0,97.1)
(25.9,93.0)
(3.0,87.8)
(17.0,98.9)
(23.6,98.2)
(17.6,100.1)
(-11.8,45.4)
(22.2,92.1)
(26.6,91.6)
(17.8,94.7)
(20.6,93.9)
(23.0,91.4)
(28.0,91.1)
(25.3,95.7)
(22.1,93.8)
(22.4,96.4)
(16.3,94.1)
(22.0,94.0)
(12.1,89.1)
confidence_ellipse示例函数只returns一个对象用于绘制,包含点只会告诉你点是否在椭圆上。
您可能想要的是:
import math
class distribution():
def __init__(self,x,y):
self.cov = np.cov(x, y)
self.mean = np.matrix( [np.mean(x), np.mean(y)])
def dist(self, x,y):
tmp = np.matrix([x,y])
diff = self.mean - tmp
dist = diff * np.linalg.inv(self.cov) * diff.T
return math.sqrt(dist)
def is_inside(self, x,y,nstd=2.0):
if (self.dist(x,y) < nstd):
return True
else:
return False
那么你可以这样做:
d = distribution(x,y)
d.is_inside(24.1,86.3)
Returns 正确。
然后,对于所有点:
points = np.array(list(zip(x, y)))
points_in = list(filter(lambda p: d.is_inside(p[0],p[1]), points))
points_out = list(filter(lambda p: not d.is_inside(p[0],p[1]), points))
x_in = [ x[0] for x in points_in]
y_in = [ x[1] for x in points_in]
x_out = [ x[0] for x in points_out]
y_out = [ x[1] for x in points_out]
fig2, ax2 = plt.subplots(1, 1, figsize=(8, 8))
ax2.scatter(x_in,y_in,s=5, facecolor="green")
ax2.scatter(x_out,y_out, s=5, facecolor="red")
ellipse = confidence_ellipse(x,y,ax2,n_std=2,edgecolor='red') # this presupposes that you still have the confidence_ellipse still defined
plt.show()
你的输出应该是这样的:
其中红色点距离超过2个标准差,绿色点在里面。
我正在寻找椭圆内的点。它不是 'ordinary' 椭圆,它实际上是基于平均值和标准差的,这比计算特征值更容易找到置信区间
函数不是我写的,这里是源码 https://matplotlib.org/devdocs/gallery/statistics/confidence_ellipse.html https://carstenschelp.github.io/2018/09/14/Plot_Confidence_Ellipse_001.html
代码如下:
import numpy as np
import matplotlib.pyplot as plt
from matplotlib.patches import Ellipse
import matplotlib.transforms as transforms
x = np.array([21.5,16.3,13.7,20.0,17.4,10.4,16.9,7.0,13.8,15.2,13.8,8.2,18.0,9.4,13.2,7.2,21.2,30.2,13.5,29.8,18.3,20.2,31.1,21.5,29.8,18.0,13.1,24.1,32.5,15.4,16.1,15.0,25.9,3.0,17.0,23.6,17.6,-11.8,22.2,26.6,17.8,20.6,23.0,28.0,25.3,22.1,22.4,16.3,22.0,12.1])
y = np.array([92.4,98.2,97.6,95.9,96.5,92.1,89.6,89.4,89.2,89.4,90.2,86.7,89.5,89.9,90.2,87.6,104.0,87.3,99.4,85.4,92.8,92.0,87.9,96.2,94.1,95.2,95.6,86.3,87.6,89.5,95.0,97.1,93.0,87.8,98.9,98.2,100.1,45.4,92.1,91.6,94.7,93.9,91.4,91.1,95.7,93.8,96.4,94.1,94.0,89.1])
#function obtained from matplotlib documentation
#https://matplotlib.org/devdocs/gallery/statistics/confidence_ellipse.html
def confidence_ellipse(x, y, ax, n_std=3.0, facecolor='none', **kwargs):
"""
Create a plot of the covariance confidence ellipse of *x* and *y*.
Parameters
----------
x, y : array-like, shape (n, )
Input data.
ax : matplotlib.axes.Axes
The axes object to draw the ellipse into.
n_std : float
The number of standard deviations to determine the ellipse's radiuses.
**kwargs
Forwarded to `~matplotlib.patches.Ellipse`
Returns
-------
matplotlib.patches.Ellipse
"""
if x.size != y.size:
raise ValueError("x and y must be the same size")
cov = np.cov(x, y)
pearson = cov[0, 1]/np.sqrt(cov[0, 0] * cov[1, 1])
# Using a special case to obtain the eigenvalues of this
# two-dimensionl dataset.
ell_radius_x = np.sqrt(1 + pearson)
ell_radius_y = np.sqrt(1 - pearson)
ellipse = Ellipse((0, 0), width=ell_radius_x * 2, height=ell_radius_y * 2,
facecolor=facecolor, **kwargs)
# Calculating the stdandard deviation of x from
# the squareroot of the variance and multiplying
# with the given number of standard deviations.
scale_x = np.sqrt(cov[0, 0]) * n_std
mean_x = np.mean(x)
# calculating the stdandard deviation of y ...
scale_y = np.sqrt(cov[1, 1]) * n_std
mean_y = np.mean(y)
transf = transforms.Affine2D() \
.rotate_deg(45) \
.scale(scale_x, scale_y) \
.translate(mean_x, mean_y)
ellipse.set_transform(transf + ax.transData)
return ax.add_patch(ellipse)
#implementation
fig, ax = plt.subplots(1, 1, figsize=(8, 4))
ax.scatter(x,y,s=5)
ellipse = confidence_ellipse(x,y,ax,n_std=2,edgecolor='red')
plt.show()
后来我试着找到中心坐标和椭圆内的点,如下所示:
ellipse.get_center()
Out:(0,0)
ellipse.contains_point([21.5,92.4])#first points in x,y arrays
Out:False
ellipse.contains_point([0,0])#get_center() result
Out:False
椭圆图工作正常,但我需要椭圆内的每个点坐标。 我做错了什么?我已经检查过类似的问题,但它们也没有用。
您可以在绘图上绘制所有 x,y
标签。
import numpy as np
import matplotlib.pyplot as plt
from matplotlib.patches import Ellipse
import matplotlib.transforms as transforms
x = np.array([21.5,16.3,13.7,20.0,17.4,10.4,16.9,7.0,13.8,15.2,13.8,8.2,18.0,9.4,13.2,7.2,21.2,30.2,13.5,29.8,18.3,20.2,31.1,21.5,29.8,18.0,13.1,24.1,32.5,15.4,16.1,15.0,25.9,3.0,17.0,23.6,17.6,-11.8,22.2,26.6,17.8,20.6,23.0,28.0,25.3,22.1,22.4,16.3,22.0,12.1])
y = np.array([92.4,98.2,97.6,95.9,96.5,92.1,89.6,89.4,89.2,89.4,90.2,86.7,89.5,89.9,90.2,87.6,104.0,87.3,99.4,85.4,92.8,92.0,87.9,96.2,94.1,95.2,95.6,86.3,87.6,89.5,95.0,97.1,93.0,87.8,98.9,98.2,100.1,45.4,92.1,91.6,94.7,93.9,91.4,91.1,95.7,93.8,96.4,94.1,94.0,89.1])
#function obtained from matplotlib documentation
#https://matplotlib.org/devdocs/gallery/statistics/confidence_ellipse.html
def confidence_ellipse(x, y, ax, n_std=3.0, facecolor='none', **kwargs):
"""
Create a plot of the covariance confidence ellipse of *x* and *y*.
Parameters
----------
x, y : array-like, shape (n, )
Input data.
ax : matplotlib.axes.Axes
The axes object to draw the ellipse into.
n_std : float
The number of standard deviations to determine the ellipse's radiuses.
**kwargs
Forwarded to `~matplotlib.patches.Ellipse`
Returns
-------
matplotlib.patches.Ellipse
"""
if x.size != y.size:
raise ValueError("x and y must be the same size")
cov = np.cov(x, y)
pearson = cov[0, 1]/np.sqrt(cov[0, 0] * cov[1, 1])
# Using a special case to obtain the eigenvalues of this
# two-dimensionl dataset.
ell_radius_x = np.sqrt(1 + pearson)
ell_radius_y = np.sqrt(1 - pearson)
ellipse = Ellipse((0, 0), width=ell_radius_x * 2, height=ell_radius_y * 2,
facecolor=facecolor, **kwargs)
# Calculating the stdandard deviation of x from
# the squareroot of the variance and multiplying
# with the given number of standard deviations.
scale_x = np.sqrt(cov[0, 0]) * n_std
mean_x = np.mean(x)
# calculating the stdandard deviation of y ...
scale_y = np.sqrt(cov[1, 1]) * n_std
mean_y = np.mean(y)
transf = transforms.Affine2D() \
.rotate_deg(45) \
.scale(scale_x, scale_y) \
.translate(mean_x, mean_y)
ellipse.set_transform(transf + ax.transData)
return ax.add_patch(ellipse)
#implementation
fig, ax = plt.subplots(1, 1, figsize=(12, 8))
ax.scatter(x,y,s=15)
ellipse = confidence_ellipse(x,y,ax,n_std=2,edgecolor='red')
# zip joins x and y coordinates in pairs
for x,y in zip(x,y):
label = f"({x},{y})"
#label = "{:.2f}".format(y) # plot just y-value of the point
# print(label) # uncomment if you want to print the points for reference
plt.annotate(label, # this is the text
(x,y), # this is the point to label
textcoords="offset points", # how to position the text
xytext=(0,10), # distance from text to points (x,y)
ha='center') # horizontal alignment can be left, right or center
plt.show()
P.S. :您需要相应地调整您的 xytext
。这就是这个 label
在图中绘制的点。
您也可以print
这些值供您参考。只需输入 print(label)
,它就会为您打印出所有的分数。
(21.5,92.4)
(16.3,98.2)
(13.7,97.6)
(20.0,95.9)
(17.4,96.5)
(10.4,92.1)
(16.9,89.6)
(7.0,89.4)
(13.8,89.2)
(15.2,89.4)
(13.8,90.2)
(8.2,86.7)
(18.0,89.5)
(9.4,89.9)
(13.2,90.2)
(7.2,87.6)
(21.2,104.0)
(30.2,87.3)
(13.5,99.4)
(29.8,85.4)
(18.3,92.8)
(20.2,92.0)
(31.1,87.9)
(21.5,96.2)
(29.8,94.1)
(18.0,95.2)
(13.1,95.6)
(24.1,86.3)
(32.5,87.6)
(15.4,89.5)
(16.1,95.0)
(15.0,97.1)
(25.9,93.0)
(3.0,87.8)
(17.0,98.9)
(23.6,98.2)
(17.6,100.1)
(-11.8,45.4)
(22.2,92.1)
(26.6,91.6)
(17.8,94.7)
(20.6,93.9)
(23.0,91.4)
(28.0,91.1)
(25.3,95.7)
(22.1,93.8)
(22.4,96.4)
(16.3,94.1)
(22.0,94.0)
(12.1,89.1)
confidence_ellipse示例函数只returns一个对象用于绘制,包含点只会告诉你点是否在椭圆上。
您可能想要的是:
import math
class distribution():
def __init__(self,x,y):
self.cov = np.cov(x, y)
self.mean = np.matrix( [np.mean(x), np.mean(y)])
def dist(self, x,y):
tmp = np.matrix([x,y])
diff = self.mean - tmp
dist = diff * np.linalg.inv(self.cov) * diff.T
return math.sqrt(dist)
def is_inside(self, x,y,nstd=2.0):
if (self.dist(x,y) < nstd):
return True
else:
return False
那么你可以这样做:
d = distribution(x,y)
d.is_inside(24.1,86.3)
Returns 正确。
然后,对于所有点:
points = np.array(list(zip(x, y)))
points_in = list(filter(lambda p: d.is_inside(p[0],p[1]), points))
points_out = list(filter(lambda p: not d.is_inside(p[0],p[1]), points))
x_in = [ x[0] for x in points_in]
y_in = [ x[1] for x in points_in]
x_out = [ x[0] for x in points_out]
y_out = [ x[1] for x in points_out]
fig2, ax2 = plt.subplots(1, 1, figsize=(8, 8))
ax2.scatter(x_in,y_in,s=5, facecolor="green")
ax2.scatter(x_out,y_out, s=5, facecolor="red")
ellipse = confidence_ellipse(x,y,ax2,n_std=2,edgecolor='red') # this presupposes that you still have the confidence_ellipse still defined
plt.show()
你的输出应该是这样的: