TidyText 聚类

TidyText Clustering

我想使用 R 和 tidytext 包对相似的词进行聚类。 我已经创建了我的标记,现在想将其转换为矩阵以便对其进行聚类。我想尝试一些令牌技术,看看哪个提供最紧凑的集群。

我的代码如下(取自widyr包的文档)。我只是无法进行下一步。有人可以帮忙吗?

library(janeaustenr)
library(dplyr)
library(tidytext)

# Comparing Jane Austen novels
austen_words <- austen_books() %>%
  unnest_tokens(word, text) 

# closest books to each other
closest <- austen_words %>%
  pairwise_similarity(book, word, n) %>%
  arrange(desc(similarity))

我知道如何围绕 closest 创建聚类算法。 这段代码会让我到达那里,但我不知道如何从上一节转到矩阵。

d <- dist(m)
kfit <- kmeans(d, 4, nstart=100)

您可以通过来自 tidytext 的 casting 为此创建一个合适的矩阵。 cast_有几个函数,比如cast_sparse().

让我们使用四本示例书,并将书中的章节聚集在一起:

library(tidyverse)
library(tidytext)
library(gutenbergr)
my_mirror <- "http://mirrors.xmission.com/gutenberg/"

books <- gutenberg_download(c(36, 158, 164, 345),
                            meta_fields = "title",
                            mirror = my_mirror)

books %>%
  count(title)
#> # A tibble: 4 x 2
#>   title                                     n
#> * <chr>                                 <int>
#> 1 Dracula                               15568
#> 2 Emma                                  16235
#> 3 The War of the Worlds                  6474
#> 4 Twenty Thousand Leagues under the Sea 12135

# break apart the chapters
by_chapter <- books %>%
  group_by(title) %>%
  mutate(chapter = cumsum(str_detect(text, regex("^chapter ", 
                                                 ignore_case = TRUE)))) %>%
  ungroup() %>%
  filter(chapter > 0) %>%
  unite(document, title, chapter)

glimpse(by_chapter)
#> Rows: 50,315
#> Columns: 3
#> $ gutenberg_id <int> 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, …
#> $ text         <chr> "CHAPTER ONE", "", "THE EVE OF THE WAR", "", "", "No one…
#> $ document     <chr> "The War of the Worlds_1", "The War of the Worlds_1", "T…

words_sparse <- by_chapter %>%
  unnest_tokens(word, text) %>% 
  anti_join(get_stopwords(source = "smart")) %>%
  count(document, word, sort = TRUE) %>%
  cast_sparse(document, word, n)
#> Joining, by = "word"

class(words_sparse)
#> [1] "dgCMatrix"
#> attr(,"package")
#> [1] "Matrix"
dim(words_sparse)
#> [1]   182 18124

words_sparse 对象是通过 cast_sparse() 创建的稀疏矩阵。您可以了解更多关于 converting back and forth from tidy and non-tidy formats for text in this chapter.

现在您有了字数矩阵(即文档术语矩阵,您可以考虑 weighting by tf-idf 而不是计数),您可以使用 kmeans()。每本书有多少章聚集在一起?

kfit <- kmeans(words_sparse, centers = 4)

enframe(kfit$cluster, value = "cluster") %>%
  separate(name, into = c("title", "chapter"), sep = "_") %>%
  count(title, cluster) %>%
  arrange(cluster)
#> # A tibble: 8 x 3
#>   title                                 cluster     n
#>   <chr>                                   <int> <int>
#> 1 Dracula                                     1    26
#> 2 The War of the Worlds                       1     1
#> 3 Dracula                                     2    28
#> 4 Emma                                        2     9
#> 5 The War of the Worlds                       2    26
#> 6 Twenty Thousand Leagues under the Sea       2     9
#> 7 Twenty Thousand Leagues under the Sea       3    37
#> 8 Emma                                        4    46

reprex package (v1.0.0)

于 2021-02-04 创建

一丛全艾玛,一丛全海底两万里,一丛全四章书籍。