Spark Structured Streaming 应用程序仅从 Kafka return 读取空值

Spark Structured Streaming application reading from Kafka return only null values

我打算使用 Spark Structured Streaming 从 Kafka 中提取数据,但我得到的是空数据。

# -*- coding: utf-8 -*-
from pyspark.sql import SparkSession
from pyspark.sql.functions import from_csv, from_json
from pyspark.sql.types import StringType, StructType

if __name__ == '__main__':
    spark = SparkSession \
        .builder \
        .appName("pyspark_structured_streaming_kafka") \
        .getOrCreate()

    df_raw = spark.read \
        .format("kafka") \
        .option("kafka.bootstrap.servers","52.81.249.81:9092") \
        .option("subscribe","product") \
        .option("kafka.ssl.endpoint.identification.algorithm","") \
        .option("kafka.isolation.level","read_committed") \
        .load()

    df_raw.printSchema()

    product_schema = StructType() \
        .add("product_name", StringType()) \
        .add("product_factory", StringType()) \
        .add("yield_num", StringType()) \
        .add("yield_time", StringType()) 

    df_1=df_raw.selectExpr("CAST(value AS STRING)") \
               .select(from_json("value",product_schema).alias("data")) \
               .select("data.*") \
               .write \
               .format("console") \
               .save()

我的测试数据如下

{
  "product_name": "X Laptop",
  "product_factory": "B-3231",
  "yield_num": 899,
  "yield_time": "20210201 22:00:01"
}

但结果出乎我的预料

./spark-submit ~/Documents/3-Playground/kbatch.py
+------------+---------------+---------+----------+
|product_name|product_factory|yield_num|yield_time|
+------------+---------------+---------+----------+
|        null|           null|     null|      null|
|        null|           null|     null|      null|

测试数据发布命令:

./kafka-producer-perf-test.sh --topic product --num-records 90000000 --throughput 5 --producer.config ../config/producer.properties --payload-file ~/Downloads/product.json

如果像这样删掉一些代码

df_1=df_raw.selectExpr("CAST(value AS STRING)") \
               .writeStream \
               .format("console") \
               .outputMode("append") \
               .option("checkpointLocation","file:///Users/picomy/Kafka-Output/checkpoint") \
               .start() \
               .awaitTermination() 

结果如下

Batch: 3130
-------------------------------------------
+--------------------+
|               value|
+--------------------+
|    "yield_time":...|
|    "product_name...|
|    "yield_num": ...|
|    "product_fact...|
|    "yield_num": ...|
|    "yield_num": ...|
|    "product_fact...|
|    "product_fact...|
|    "product_name...|
|    "product_fact...|
|    "product_name...|
|                   }|
|    "yield_time":...|
|    "product_name...|
|                   }|
|    "product_fact...|
|    "yield_num": ...|
|    "product_fact...|
|    "yield_time":...|
|    "product_name...|
+--------------------+

不知道问题的根本原因在哪里

导致您的代码无法正常工作的原因很少:

  • 错误的架构(字段 yield_num 是一个 integer/long)
  • 使用 writeStream 而不是只写(如果你想要流式传输)
  • 开始和等待流式查询的终止
  • 您的 json 文件中的数据应仅存储在一行中

您可以使用以下代码段替换部分代码:

from pyspark.sql.types import StringType, StructType, LongType

    product_schema = StructType() \
        .add("product_name", StringType()) \
        .add("product_factory", StringType()) \
        .add("yield_num", LongType()) \
        .add("yield_time", StringType()) 

    df_1=df_raw.selectExpr("CAST(value AS STRING)") \
               .select(from_json("value",product_schema).alias("data")) \
               .select("data.*") \
               .writeStream \
               .format("console") \
               .start()
               .awaitTermination()