如何从 python 中尾部上升的频谱中减去基线?
How to subtract baseline from spectrum with rising tail in python?
我有一个要从中减去基线的光谱。光谱数据为:
1.484043000000000001e+00 1.121043091000000004e+03
1.472555999999999976e+00 1.140899658000000045e+03
1.461239999999999872e+00 1.135047851999999921e+03
1.450093000000000076e+00 1.153286499000000049e+03
1.439112000000000169e+00 1.158624877999999853e+03
1.428292000000000117e+00 1.249718872000000147e+03
1.417629999999999946e+00 1.491854857999999922e+03
1.407121999999999984e+00 2.524922362999999677e+03
1.396767000000000092e+00 4.102439940999999635e+03
1.386559000000000097e+00 4.013319579999999860e+03
1.376497999999999999e+00 3.128252441000000090e+03
1.366578000000000070e+00 2.633181152000000111e+03
1.356797999999999949e+00 2.340077147999999852e+03
1.347154999999999880e+00 2.099404540999999881e+03
1.337645999999999891e+00 2.012083983999999873e+03
1.328268000000000004e+00 2.052154540999999881e+03
1.319018999999999942e+00 2.061067871000000196e+03
1.309895999999999949e+00 2.205770507999999609e+03
1.300896999999999970e+00 2.199266602000000148e+03
1.292019000000000029e+00 2.317792235999999775e+03
1.283260000000000067e+00 2.357031494000000293e+03
1.274618000000000029e+00 2.434981689000000188e+03
1.266089999999999938e+00 2.540746337999999923e+03
1.257675000000000098e+00 2.605709472999999889e+03
1.249370000000000092e+00 2.667244141000000127e+03
1.241172999999999860e+00 2.800522704999999860e+03
我只从实际数据文件中提取每 20 个数据点,但保留了一般形状。
import matplotlib.pyplot as plt
share = the_above_array
plt.plot(share)
Original_spectrum
高 x 值周围有明显的尾巴。假设尾巴是人工制品,需要去除。我尝试过使用 by P. Eilers, a rubberband approach, and the peakutils 包的解决方案,但这些解决方案最终会减去尾部并在低 x 值周围产生上升或没有创建合适的基线。
ALS算法,在这个例子中我使用了lam=1E6
和p=0.001
;这些是我能够手动找到的最佳参数:
# ALS approach
from scipy import sparse
from scipy.sparse.linalg import spsolve
def baseline_als(y, lam, p, niter=10):
L = len(y)
D = sparse.csc_matrix(np.diff(np.eye(L), 2))
w = np.ones(L)
for i in range(niter):
W = sparse.spdiags(w, 0, L, L)
Z = W + lam * D.dot(D.transpose())
z = spsolve(Z, w*y)
w = p * (y > z) + (1-p) * (y < z)
return z
baseline = baseline_als(share[:,1], 1E6, 0.001)
baseline_subtracted = share[:,1] - baseline
plt.plot(baseline_subtracted)
ALS_plot
橡皮筋方法:
# rubberband approach
from scipy.spatial import ConvexHull
def rubberband(x, y):
# Find the convex hull
v = ConvexHull(share).vertices
# Rotate convex hull vertices until they start from the lowest one
v = np.roll(v, v.argmax())
# Leave only the ascending part
v = v[:v.argmax()]
# Create baseline using linear interpolation between vertices
return np.interp(x, x[v], y[v])
baseline_rubber = rubberband(share[:,0], share[:,1])
intensity_rubber = share[:,1] - baseline_rubber
plt.plot(intensity_rubber)
Rubber_plot
peakutils 包:
# peakutils approach
import peakutils
baseline_peakutils = peakutils.baseline(share[:,1])
intensity_peakutils = share[:,1] - baseline_peakutils
plt.plot(intensity_peakutils)
Peakutils_plot
除了屏蔽低 x 值数据之外,是否有任何建议可以构建基线并减去尾部而不增加低 x 值?
我找到了一组类似的ALS算法here。其中一种算法,非对称重新加权惩罚最小二乘平滑 (arpls
),比 als
.
的拟合效果稍好
# arpls approach
from scipy.linalg import cholesky
def arpls(y, lam=1e4, ratio=0.05, itermax=100):
r"""
Baseline correction using asymmetrically
reweighted penalized least squares smoothing
Sung-June Baek, Aaron Park, Young-Jin Ahna and Jaebum Choo,
Analyst, 2015, 140, 250 (2015)
"""
N = len(y)
D = sparse.eye(N, format='csc')
D = D[1:] - D[:-1] # numpy.diff( ,2) does not work with sparse matrix. This is a workaround.
D = D[1:] - D[:-1]
H = lam * D.T * D
w = np.ones(N)
for i in range(itermax):
W = sparse.diags(w, 0, shape=(N, N))
WH = sparse.csc_matrix(W + H)
C = sparse.csc_matrix(cholesky(WH.todense()))
z = spsolve(C, spsolve(C.T, w * y))
d = y - z
dn = d[d < 0]
m = np.mean(dn)
s = np.std(dn)
wt = 1. / (1 + np.exp(2 * (d - (2 * s - m)) / s))
if np.linalg.norm(w - wt) / np.linalg.norm(w) < ratio:
break
w = wt
return z
baseline = baseline_als(share[:,1], 1E6, 0.001)
baseline_subtracted = share[:,1] - baseline
plt.plot(baseline_subtracted, 'r', label='als')
baseline_arpls = arpls(share[:,1], 1e5, 0.1)
intensity_arpls = share[:,1] - baseline_arpls
plt.plot(intensity_arpls, label='arpls')
plt.legend()
ARPLS 图
幸运的是,当使用来自整个频谱的数据时,这种改进变得更好:
请注意两种算法的参数不同。目前,我认为 arpls
算法是我能得到的最接近的算法,至少对于看起来像这样的光谱来说是这样。我们将看到该算法如何稳健地拟合具有不同形状的光谱。当然,我总是乐于接受建议或改进!
看看 python 中的 RamPy 库,它提出了各种基线减法算法。这包括样条曲线、ARPLS、ALS、多项式函数等等。它还提供各种其他功能,例如重采样、归一化和峰值拟合示例。
对于您的情况,在峰值前后拟合一个简单的样条函数应该很容易完成这项工作。看看 this example Jupyter notebook.
我有一个要从中减去基线的光谱。光谱数据为:
1.484043000000000001e+00 1.121043091000000004e+03
1.472555999999999976e+00 1.140899658000000045e+03
1.461239999999999872e+00 1.135047851999999921e+03
1.450093000000000076e+00 1.153286499000000049e+03
1.439112000000000169e+00 1.158624877999999853e+03
1.428292000000000117e+00 1.249718872000000147e+03
1.417629999999999946e+00 1.491854857999999922e+03
1.407121999999999984e+00 2.524922362999999677e+03
1.396767000000000092e+00 4.102439940999999635e+03
1.386559000000000097e+00 4.013319579999999860e+03
1.376497999999999999e+00 3.128252441000000090e+03
1.366578000000000070e+00 2.633181152000000111e+03
1.356797999999999949e+00 2.340077147999999852e+03
1.347154999999999880e+00 2.099404540999999881e+03
1.337645999999999891e+00 2.012083983999999873e+03
1.328268000000000004e+00 2.052154540999999881e+03
1.319018999999999942e+00 2.061067871000000196e+03
1.309895999999999949e+00 2.205770507999999609e+03
1.300896999999999970e+00 2.199266602000000148e+03
1.292019000000000029e+00 2.317792235999999775e+03
1.283260000000000067e+00 2.357031494000000293e+03
1.274618000000000029e+00 2.434981689000000188e+03
1.266089999999999938e+00 2.540746337999999923e+03
1.257675000000000098e+00 2.605709472999999889e+03
1.249370000000000092e+00 2.667244141000000127e+03
1.241172999999999860e+00 2.800522704999999860e+03
我只从实际数据文件中提取每 20 个数据点,但保留了一般形状。
import matplotlib.pyplot as plt
share = the_above_array
plt.plot(share)
Original_spectrum
高 x 值周围有明显的尾巴。假设尾巴是人工制品,需要去除。我尝试过使用
ALS算法,在这个例子中我使用了lam=1E6
和p=0.001
;这些是我能够手动找到的最佳参数:
# ALS approach
from scipy import sparse
from scipy.sparse.linalg import spsolve
def baseline_als(y, lam, p, niter=10):
L = len(y)
D = sparse.csc_matrix(np.diff(np.eye(L), 2))
w = np.ones(L)
for i in range(niter):
W = sparse.spdiags(w, 0, L, L)
Z = W + lam * D.dot(D.transpose())
z = spsolve(Z, w*y)
w = p * (y > z) + (1-p) * (y < z)
return z
baseline = baseline_als(share[:,1], 1E6, 0.001)
baseline_subtracted = share[:,1] - baseline
plt.plot(baseline_subtracted)
ALS_plot
橡皮筋方法:
# rubberband approach
from scipy.spatial import ConvexHull
def rubberband(x, y):
# Find the convex hull
v = ConvexHull(share).vertices
# Rotate convex hull vertices until they start from the lowest one
v = np.roll(v, v.argmax())
# Leave only the ascending part
v = v[:v.argmax()]
# Create baseline using linear interpolation between vertices
return np.interp(x, x[v], y[v])
baseline_rubber = rubberband(share[:,0], share[:,1])
intensity_rubber = share[:,1] - baseline_rubber
plt.plot(intensity_rubber)
Rubber_plot
peakutils 包:
# peakutils approach
import peakutils
baseline_peakutils = peakutils.baseline(share[:,1])
intensity_peakutils = share[:,1] - baseline_peakutils
plt.plot(intensity_peakutils)
Peakutils_plot
除了屏蔽低 x 值数据之外,是否有任何建议可以构建基线并减去尾部而不增加低 x 值?
我找到了一组类似的ALS算法here。其中一种算法,非对称重新加权惩罚最小二乘平滑 (arpls
),比 als
.
# arpls approach
from scipy.linalg import cholesky
def arpls(y, lam=1e4, ratio=0.05, itermax=100):
r"""
Baseline correction using asymmetrically
reweighted penalized least squares smoothing
Sung-June Baek, Aaron Park, Young-Jin Ahna and Jaebum Choo,
Analyst, 2015, 140, 250 (2015)
"""
N = len(y)
D = sparse.eye(N, format='csc')
D = D[1:] - D[:-1] # numpy.diff( ,2) does not work with sparse matrix. This is a workaround.
D = D[1:] - D[:-1]
H = lam * D.T * D
w = np.ones(N)
for i in range(itermax):
W = sparse.diags(w, 0, shape=(N, N))
WH = sparse.csc_matrix(W + H)
C = sparse.csc_matrix(cholesky(WH.todense()))
z = spsolve(C, spsolve(C.T, w * y))
d = y - z
dn = d[d < 0]
m = np.mean(dn)
s = np.std(dn)
wt = 1. / (1 + np.exp(2 * (d - (2 * s - m)) / s))
if np.linalg.norm(w - wt) / np.linalg.norm(w) < ratio:
break
w = wt
return z
baseline = baseline_als(share[:,1], 1E6, 0.001)
baseline_subtracted = share[:,1] - baseline
plt.plot(baseline_subtracted, 'r', label='als')
baseline_arpls = arpls(share[:,1], 1e5, 0.1)
intensity_arpls = share[:,1] - baseline_arpls
plt.plot(intensity_arpls, label='arpls')
plt.legend()
ARPLS 图
幸运的是,当使用来自整个频谱的数据时,这种改进变得更好:
请注意两种算法的参数不同。目前,我认为 arpls
算法是我能得到的最接近的算法,至少对于看起来像这样的光谱来说是这样。我们将看到该算法如何稳健地拟合具有不同形状的光谱。当然,我总是乐于接受建议或改进!
看看 python 中的 RamPy 库,它提出了各种基线减法算法。这包括样条曲线、ARPLS、ALS、多项式函数等等。它还提供各种其他功能,例如重采样、归一化和峰值拟合示例。
对于您的情况,在峰值前后拟合一个简单的样条函数应该很容易完成这项工作。看看 this example Jupyter notebook.