Perceptron Logical OR ValueError: The truth value of an array with more than one element is ambiguous. Use a.any() or a.all()

Perceptron Logical OR ValueError: The truth value of an array with more than one element is ambiguous. Use a.any() or a.all()

我发现了另一个标题几乎相同的问题,但它是关于逻辑与的,而我对逻辑或有疑问。

这是我的代码:

from numpy import array, random, dot
from random import choice
from pylab import ylim, plot

from matplotlib import pyplot as plt


def step_function(x): return 0 if x < 0 else 1


training_dataset = [

    (array([0, 1, 0.2345678]), 1),

    (array([1, 0, 1]), 1),

    (array([1, 1, 0]), 0),

    (array([1, 1, 0.5]), 1),

]

weights = random.rand(3)

error = []

learning_rate = 0.00000001

n = 100

for j in range(n):
    x, expected = choice(training_dataset)
    result = dot(weights, x)
    err = expected - step_function(result)
    error.append(err)
    weights = weights + learning_rate * err * x

for i in range(100):

    result = dot(i, weights)

    print("{}: {} -> {}".format(i, result, step_function(result)))

ylim([-1,1])

plot(error)

plt.show()

我正在尝试制作一个感知器。我不知道问题是什么,但是 ValueError: The truth value of an array with more than one element is ambiguous. Use a.any() or a.all() 当我将模型评估循环从 for i, _ in training_dataset: 更改为 for i in range(100): 时发生。我这样做是因为它只会向我显示 4 次输出,而我想查看程序 运行 100 次。你知道为什么会这样吗?我该如何解决?

for 循环遍历 training_dataset,而不是范围。您需要为点函数提供训练数据集。

from numpy import array, random, dot
from random import choice
from pylab import ylim, plot

from matplotlib import pyplot as plt


def step_function(x): return 0 if x < 0 else 1


training_dataset = [

    (array([0, 1, 0.2345678]), 1),

    (array([1, 0, 1]), 1),

    (array([1, 1, 0]), 0),

    (array([1, 1, 0.5]), 1),

]

weights = random.rand(3)

error = []

learning_rate = 0.1

n = 100

for j in range(n):
    x, expected = choice(training_dataset)
    result = dot(weights, x)
    err = expected - step_function(result)
    error.append(err)
    weights = weights + learning_rate * err * x

for i in range(100):

    k = random.randint(len(training_dataset))
    
    result = dot(training_dataset[k][0], weights)

    print("{}: {} -> {}".format(i, result, step_function(result)))

ylim([-1,1])

plot(error)

plt.show()