BERT 使用拥抱面部模型的分数将 'SpanAnnotation' 转换为答案
BERT Convert 'SpanAnnotation' to answers using scores from hugging face models
我正在跟随 documentation 从 huggingface
导入预训练模型问答模型
from transformers import BertTokenizer, BertForQuestionAnswering
import torch
tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')
model = BertForQuestionAnswering.from_pretrained('bert-base-uncased')
question, text = "Who was Jim Henson?", "Jim Henson was a nice puppet"
inputs = tokenizer(question, text, return_tensors='pt')
start_positions = torch.tensor([1])
end_positions = torch.tensor([3])
outputs = model(**inputs, start_positions=start_positions, end_positions=end_positions)
loss = outputs.loss
start_scores = outputs.start_logits
end_scores = outputs.end_logits
这个 returns 开始和结束分数,但我怎样才能从这里获得有意义的文本答案?
所以我做了一点挖掘,看起来分数可以转换为可用于构建答案的标记。这是一个简短的例子:
answer_start = torch.argmax(start_scores)
answer_end = torch.argmax(end_scores) + 1
tokenizer.convert_tokens_to_string(tokenizer.convert_ids_to_tokens(inputs["input_ids"][0][answer_start:answer_end]))
我正在跟随 documentation 从 huggingface
导入预训练模型问答模型from transformers import BertTokenizer, BertForQuestionAnswering
import torch
tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')
model = BertForQuestionAnswering.from_pretrained('bert-base-uncased')
question, text = "Who was Jim Henson?", "Jim Henson was a nice puppet"
inputs = tokenizer(question, text, return_tensors='pt')
start_positions = torch.tensor([1])
end_positions = torch.tensor([3])
outputs = model(**inputs, start_positions=start_positions, end_positions=end_positions)
loss = outputs.loss
start_scores = outputs.start_logits
end_scores = outputs.end_logits
这个 returns 开始和结束分数,但我怎样才能从这里获得有意义的文本答案?
所以我做了一点挖掘,看起来分数可以转换为可用于构建答案的标记。这是一个简短的例子:
answer_start = torch.argmax(start_scores)
answer_end = torch.argmax(end_scores) + 1
tokenizer.convert_tokens_to_string(tokenizer.convert_ids_to_tokens(inputs["input_ids"][0][answer_start:answer_end]))