LeetCode 1707. 数组中元素的最大异或
LeetCode 1707. Maximum XOR With an Element From Array
给你一个由非负整数组成的数组 nums。您还会得到一个查询数组,其中 queries[i] = [xi, mi].
第i个查询的答案是xi与nums中任意一个不超过mi的元素的最大按位异或值。换句话说,对于所有满足 nums[j] <= mi 的 j,答案是 max(nums[j] XOR xi)。如果nums中的所有元素都大于mi,那么答案就是-1。
Return 一个整数数组答案,其中 answer.length == queries.length 和 answer[i] 是第 i 个查询的答案。
这个python解法用了Trie,LeetCode还是显示TLE?
import operator
class TrieNode:
def __init__(self):
self.left=None
self.right=None
class Solution:
def insert(self,head,x):
curr=head
for i in range(31,-1,-1):
val = (x>>i) & 1
if val==0:
if not curr.left:
curr.left=TrieNode()
curr=curr.left
else:
curr=curr.left
else:
if not curr.right:
curr.right=TrieNode()
curr=curr.right
else:
curr=curr.right
def maximizeXor(self, nums: List[int], queries: List[List[int]]) -> List[int]:
res=[-10]*len(queries)
nums.sort()
for i in range(len(queries)):
queries[i].append(i)
queries.sort(key=operator.itemgetter(1))
head=TrieNode()
for li in queries:
max=0
xi,mi,index=li[0],li[1],li[2]
m=2**31
node = head
pos=0
if mi<nums[0]:
res[index]=-1
continue
for i in range(pos,len(nums)):
if mi<nums[i]:
pos=i
break
self.insert(node,nums[i])
node=head
for i in range(31,-1,-1):
val=(xi>>i)&1
if val==0:
if node.right:
max+=m
node=node.right
else:
node=node.left
else:
if node.left:
max+=m
node=node.left
else:
node=node.right
m>>=1
res[index]=max
return -1
这里是解决这个问题的替代Trie
工具:
[注:1) max(x XOR y for y in A); 2)对MSB位做贪心; 3) 对查询进行排序]
class Trie:
def __init__(self):
self.root = {}
def add(self, n):
p = self.root
for bitpos in range(31, -1, -1):
bit = (n >> bitpos) & 1
if bit not in p:
p[bit] = {}
p = p[bit]
def query(self, n):
p = self.root
ret = 0
if not p:
return -1
for bitpos in range(31, -1, -1):
bit = (n >> bitpos) & 1
inverse = 1 - bit
if inverse in p:
p = p[inverse]
ret |= (1 << bitpos)
else:
p = p[bit]
return ret
class Solution:
def maximizeXor(self, nums: List[int], queries: List[List[int]]) -> List[int]:
n = len(nums)
trie = Trie()
q = sorted(enumerate(queries), key = lambda x: x[1][1])
nums.sort()
res = [-1] * len(queries)
i = 0
for index, (x, m) in q:
while i < n and nums[i] <= m:
trie.add(nums[i])
i += 1
res[index] = trie.query(x)
return res
问题是您正在为每个查询构建一个新的 Trie
。更糟糕的是,使用线性搜索在 nums
中找到最大值 <= mi
。简单地使用
你会过得更好
max((n for n in nums if n <= mi), key=lambda n: n^xi, default=-1)
这里的解决方案是在一开始就构建 trie,然后使用该 trie 简单地过滤小于 mi
的值:
import math
import bisect
def dump(t, indent=''):
if t is not None:
print(indent, "bit=", t.bit, "val=", t.val, "lower=", t.lower)
dump(t.left, indent + '\tl')
dump(t.right, indent + '\tr')
class Trie:
def __init__(self, bit, val, lower):
self.bit = bit
self.val = val
self.lower = lower
self.left = None
self.right = None
def solve(self, mi, xi):
print('-------------------------------------------')
print(self.bit, "mi(b)=", (mi >> self.bit) & 1, "xi(b)=", (xi >> self.bit) & 1, "mi=", mi, "xi=", xi)
dump(self)
if self.val is not None:
# reached a leave of the trie => found matching value
print("Leaf")
return self.val
if mi & (1 << self.bit) == 0:
# the maximum has a zero-bit at this position => all values in the right subtree are > mi
print("Left forced by max")
return -1 if self.left is None else self.left.solve(mi, xi)
# pick based on xor-value if possible
if (xi >> self.bit) & 1 == 0 and self.right is not None and (mi > self.right.lower or mi == ~0):
print("Right preferred by xi")
return self.right.solve(mi, xi)
elif (xi >> self.bit) & 1 == 1 and self.left is not None:
print("Left preferred by xi")
return self.left.solve(~0, xi)
# pick whichever is available
if self.right is not None and (mi > self.right.lower or mi == ~0):
print("Only right available")
return self.right.solve(mi, xi)
elif self.left is not None:
print("Only left available")
return self.left.solve(~0, xi)
else:
print("None available")
return -1
def build_trie(nums):
nums.sort()
# msb of max(nums)
max_bit = int(math.log(nums[-1], 2)) # I'll just assume that nums is never empty
print(max_bit)
def node(start, end, bit, template):
print(start, end, bit, template, nums[start:end])
if end - start == 1:
# reached a leaf
return Trie(0, nums[start], nums[start])
elif start == end:
# a partition without values => no Trie-node
return None
# find pivot for partitioning based on bit-value of specified position (bit)
part = bisect.bisect_left(nums, template | (1 << bit), start, end)
print(part)
# build nodes for paritioning
res = Trie(bit, None, nums[start])
res.left = node(start, part, bit - 1, template)
res.right = node(part, end, bit - 1, template | (1 << bit))
return res
return node(0, len(nums), max_bit, 0)
class Solution:
def maximizeXor(self, nums: List[int], queries: List[List[int]]) -> List[int]:
trie = build_trie(nums)
return [trie.solve(mi if mi <= nums[-1] else ~0, xi) for xi, mi in queries]
我有点懒,只是用 ~0
表示可以忽略最大值,因为子树中的所有值都小于 mi
。基本思想是 ~0 & x == x
对任何整数 x
都成立。不像 那样简单,但能够处理查询流。
给你一个由非负整数组成的数组 nums。您还会得到一个查询数组,其中 queries[i] = [xi, mi].
第i个查询的答案是xi与nums中任意一个不超过mi的元素的最大按位异或值。换句话说,对于所有满足 nums[j] <= mi 的 j,答案是 max(nums[j] XOR xi)。如果nums中的所有元素都大于mi,那么答案就是-1。
Return 一个整数数组答案,其中 answer.length == queries.length 和 answer[i] 是第 i 个查询的答案。 这个python解法用了Trie,LeetCode还是显示TLE?
import operator
class TrieNode:
def __init__(self):
self.left=None
self.right=None
class Solution:
def insert(self,head,x):
curr=head
for i in range(31,-1,-1):
val = (x>>i) & 1
if val==0:
if not curr.left:
curr.left=TrieNode()
curr=curr.left
else:
curr=curr.left
else:
if not curr.right:
curr.right=TrieNode()
curr=curr.right
else:
curr=curr.right
def maximizeXor(self, nums: List[int], queries: List[List[int]]) -> List[int]:
res=[-10]*len(queries)
nums.sort()
for i in range(len(queries)):
queries[i].append(i)
queries.sort(key=operator.itemgetter(1))
head=TrieNode()
for li in queries:
max=0
xi,mi,index=li[0],li[1],li[2]
m=2**31
node = head
pos=0
if mi<nums[0]:
res[index]=-1
continue
for i in range(pos,len(nums)):
if mi<nums[i]:
pos=i
break
self.insert(node,nums[i])
node=head
for i in range(31,-1,-1):
val=(xi>>i)&1
if val==0:
if node.right:
max+=m
node=node.right
else:
node=node.left
else:
if node.left:
max+=m
node=node.left
else:
node=node.right
m>>=1
res[index]=max
return -1
这里是解决这个问题的替代Trie
工具:
[注:1) max(x XOR y for y in A); 2)对MSB位做贪心; 3) 对查询进行排序]
class Trie:
def __init__(self):
self.root = {}
def add(self, n):
p = self.root
for bitpos in range(31, -1, -1):
bit = (n >> bitpos) & 1
if bit not in p:
p[bit] = {}
p = p[bit]
def query(self, n):
p = self.root
ret = 0
if not p:
return -1
for bitpos in range(31, -1, -1):
bit = (n >> bitpos) & 1
inverse = 1 - bit
if inverse in p:
p = p[inverse]
ret |= (1 << bitpos)
else:
p = p[bit]
return ret
class Solution:
def maximizeXor(self, nums: List[int], queries: List[List[int]]) -> List[int]:
n = len(nums)
trie = Trie()
q = sorted(enumerate(queries), key = lambda x: x[1][1])
nums.sort()
res = [-1] * len(queries)
i = 0
for index, (x, m) in q:
while i < n and nums[i] <= m:
trie.add(nums[i])
i += 1
res[index] = trie.query(x)
return res
问题是您正在为每个查询构建一个新的 Trie
。更糟糕的是,使用线性搜索在 nums
中找到最大值 <= mi
。简单地使用
max((n for n in nums if n <= mi), key=lambda n: n^xi, default=-1)
这里的解决方案是在一开始就构建 trie,然后使用该 trie 简单地过滤小于 mi
的值:
import math
import bisect
def dump(t, indent=''):
if t is not None:
print(indent, "bit=", t.bit, "val=", t.val, "lower=", t.lower)
dump(t.left, indent + '\tl')
dump(t.right, indent + '\tr')
class Trie:
def __init__(self, bit, val, lower):
self.bit = bit
self.val = val
self.lower = lower
self.left = None
self.right = None
def solve(self, mi, xi):
print('-------------------------------------------')
print(self.bit, "mi(b)=", (mi >> self.bit) & 1, "xi(b)=", (xi >> self.bit) & 1, "mi=", mi, "xi=", xi)
dump(self)
if self.val is not None:
# reached a leave of the trie => found matching value
print("Leaf")
return self.val
if mi & (1 << self.bit) == 0:
# the maximum has a zero-bit at this position => all values in the right subtree are > mi
print("Left forced by max")
return -1 if self.left is None else self.left.solve(mi, xi)
# pick based on xor-value if possible
if (xi >> self.bit) & 1 == 0 and self.right is not None and (mi > self.right.lower or mi == ~0):
print("Right preferred by xi")
return self.right.solve(mi, xi)
elif (xi >> self.bit) & 1 == 1 and self.left is not None:
print("Left preferred by xi")
return self.left.solve(~0, xi)
# pick whichever is available
if self.right is not None and (mi > self.right.lower or mi == ~0):
print("Only right available")
return self.right.solve(mi, xi)
elif self.left is not None:
print("Only left available")
return self.left.solve(~0, xi)
else:
print("None available")
return -1
def build_trie(nums):
nums.sort()
# msb of max(nums)
max_bit = int(math.log(nums[-1], 2)) # I'll just assume that nums is never empty
print(max_bit)
def node(start, end, bit, template):
print(start, end, bit, template, nums[start:end])
if end - start == 1:
# reached a leaf
return Trie(0, nums[start], nums[start])
elif start == end:
# a partition without values => no Trie-node
return None
# find pivot for partitioning based on bit-value of specified position (bit)
part = bisect.bisect_left(nums, template | (1 << bit), start, end)
print(part)
# build nodes for paritioning
res = Trie(bit, None, nums[start])
res.left = node(start, part, bit - 1, template)
res.right = node(part, end, bit - 1, template | (1 << bit))
return res
return node(0, len(nums), max_bit, 0)
class Solution:
def maximizeXor(self, nums: List[int], queries: List[List[int]]) -> List[int]:
trie = build_trie(nums)
return [trie.solve(mi if mi <= nums[-1] else ~0, xi) for xi, mi in queries]
我有点懒,只是用 ~0
表示可以忽略最大值,因为子树中的所有值都小于 mi
。基本思想是 ~0 & x == x
对任何整数 x
都成立。不像