第二次计算的 Tensorflow 性能下降

Tensorflow performance drop for second calculation

我是 Tensorflow2.0 的新手,我正在考虑使用它的 gpu 处理功能进行一些矩阵计算。所以我在测量性能时尝试了一些大矩阵乘法。 当我 运行 它在一个大矩阵上时它非常快。但是当我 运行 它之后在其他矩阵上它变得非常慢。非常小的张量的初始化也很慢。 这是一个问题,因为矩阵使用了太多内存吗?但即使我用 pythons del 删除变量,问题仍然存在。

我的python代码:

import tensorflow as tf
import numpy as np
import time


a = np.ones((9000,4000))
b = np.ones((4000,9000))

a2 = [a,a,a,a,a,a,a]
b2 = [b,b,b,b,b,b,b]

a3 = np.ones((7,9000,4000))
b3 = np.ones((7,4000,9000))

with tf.device('/gpu:0'):
    
    # first multiplication

    a2 = tf.convert_to_tensor(a)
    b2 = tf.convert_to_tensor(b)

    start = time.time()
    c = tf.matmul([b2,b2,b2,b2,b2,b2,b2], [a2,a2,a2,a2,a2,a2,a2])
    print("first multiplication time: ", time.time() - start)
    del c, a2, b2

    # second multiplication

    a3 = tf.convert_to_tensor(a3)
    b3 = tf.convert_to_tensor(b3)

    start = time.time()
    c = tf.matmul(b3, a3)
    print("second multiplication time: ", time.time() - start)
    del c, a3, b3

    # third multiplication

    start = time.time()
    n = tf.constant([1.0, 2.0, 3.0, 4.0, 5.0, 6.0], shape=[2, 3], name='n')
    m = tf.constant([1.0, 2.0, 3.0, 4.0, 5.0, 6.0], shape=[3, 2], name='m')
    print("constant init time: ",time.time() - start)

    c = tf.matmul([n,n], [m,m])
    print("constant init plus third multiplication time: ", time.time() - start)

输出(无tensorflow信息输出)

first multiplication time:  0.7032458782196045
2021-02-07 20:40:36.004254: W tensorflow/core/framework/cpu_allocator_impl.cc:80] Allocation of 2016000000 exceeds 10% of free system memory.
2021-02-07 20:40:36.588404: W tensorflow/core/framework/cpu_allocator_impl.cc:80] Allocation of 2016000000 exceeds 10% of free system memory.
second multiplication time:  6.460264682769775
constant init time:  6.7629804611206055
constant init plus third multiplication time:  6.76327919960022

当我取消注释第一个乘法时,输出变为:

2021-02-07 20:44:29.165061: W tensorflow/core/framework/cpu_allocator_impl.cc:80] Allocation of 2016000000 exceeds 10% of free system memory.
2021-02-07 20:44:29.763323: W tensorflow/core/framework/cpu_allocator_impl.cc:80] Allocation of 2016000000 exceeds 10% of free system memory.
second multiplication time:  0.9040727615356445
constant init time:  7.273072242736816
constant init plus third multiplication time:  7.273530006408691

而当我只运行第三次计算时:

constant init time:  0.0499725341796875
constant init plus third multiplication time:  0.4284539222717285

我真的很想了解正在发生的事情,甚至可能找到改进它的方法。

感谢您的帮助!

发生这种情况是因为您没有将张量从 GPU 传输回 CPU,所以它们占用了 GPU space。我不确定 del,从技术上讲它应该在 eager 中工作,但是有一个与内存泄漏相关的错误(不确定它是否已修复)。

如果在tf.matmul

之后调用额外的函数
c = tf.matmul(b3, a3).numpy() // call numpy which copies it back to cpu

你应该得到正确的时间,

first multiplication time:  8.76913070678711
second multiplication time:  8.516901731491089
constant init time:  0.0011458396911621094
constant init plus third multiplication time:  0.0024268627166748047

让我知道是否缺少任何东西...