在 R 中使用 lag 和 mutate 命令创建迭代函数

Creating an iterative function using lag and mutate command in R

我有一个数据集DF,数据如下

Zone Year X Y
1001 2018 10 5
1001 2019 20 10
1001 2020 30 20
1002 2018 15 10
1002 2019 25 20
1002 2020 35 40

我想创建一个列 Z = X + Y - 上一年的 Y 所以它创建了以下 Table:

Zone Year X Y Z
1001 2018 10 5 NA
1001 2019 20 10 25
1001 2020 30 20 40
1002 2018 15 10 NA
1002 2019 25 20 35
1002 2020 35 40 55

我可以使用 DPLYR 中的“mutate”来生成 Z 列: 突变(DF,Z = X + Y - 滞后(Y))

我可以使用 tapply 在 DF 上递归应用。我可以在用户定义的函数中使用 DPLYR 创建一个函数,以便稍后使用 tapply 应用它吗?

dplyr 中,您可以添加 group_by 为每个组 (Zone) 应用一个函数。

library(dplyr)
DF %>% group_by(Zone) %>% mutate(Z = X + Y - lag(Y))

#   Zone  Year     X     Y     Z
#  <int> <int> <int> <int> <int>
#1  1001  2018    10     5    NA
#2  1001  2019    20    10    25
#3  1001  2020    30    20    40
#4  1002  2018    15    10    NA
#5  1002  2019    25    20    35
#6  1002  2020    35    40    55

我们也可以写一个函数:

add_new_col = function(x, y) {
  x + y - lag(y)
}

可以用作:

DF %>% group_by(Zone) %>% mutate(Z = add_new_col(X, Y))

数据

DF <- structure(list(Zone = c(1001L, 1001L, 1001L, 1002L, 1002L, 1002L
), Year = c(2018L, 2019L, 2020L, 2018L, 2019L, 2020L), X = c(10L, 
20L, 30L, 15L, 25L, 35L), Y = c(5L, 10L, 20L, 10L, 20L, 40L)), 
class = "data.frame", row.names = c(NA, -6L))

使用data.table

library(data.table)
setDT(DF)[, Z := X + Y - shift(Y), Zone]