在 R 中聚类用户;监控集群结构的变化以检测 "disappear" 或 "move" 集群的用户
Clustering users in R; monitoring changes in cluster structure to detect users that "disappear" or "move" clusters
我正在处理纵向用户事件生成的数据集,我正在尝试使用 k-means 在月-年级别对数据中的用户 ID 进行聚类。这个想法是我想看看用户是如何在不同的时间点从不同的集群原型中消失或进入的。
这是我目前的代码,其中包含模拟数据框和聚类过程。
library(Pareto)
library(uuid)
library(ggplot2)
library(data.table)
library(zoo)
#generating the user ID variable
set.seed(1)
n_users <- 1300
n_rows <- 365000
relative_probs <- rPareto(n = n_users, t = 1, alpha = 0.3, truncation = 500)
unique_ids <- UUIDgenerate(n = n_users)
id_sample <- sample(unique_ids, size = n_rows, prob = relative_probs, replace = TRUE)
id_sample
df<-data.frame(id_sample)
#creating the date variable
df$Date<-sample(seq(as.Date("2015-01-01"), as.Date("2017-12-31"), by = "1 day"),
size = n_rows,replace = T)
#creating a numeric value called Duration; this will be a feature in the clustering
df$Duration<-sample(0:3000, nrow(df), replace = T)
df<-df%>%arrange(Date)
#getting Month-Year
df$MonthYear<-as.Date(as.yearmon(df$Date, "%m/%Y"))
MonthYear<-unique(df$MonthYear)
#empty results df
resultsdf<-data.frame()
for (i in MonthYear) {
#getting variables for clustering. I need to cluster based on the number of times the User appears in the data i.e. "Count"
#the second variable is the mean duration for each User ID i.e. "MeanDur"
#the third and final variable is the standard deviation of duration i.e. "SDDur"
df_filtered<-df%>%
filter(MonthYear<=i)
callerData<-df_filtered%>%
group_by(id_sample)%>%
summarise(Count=n(),MeanDur=mean(Duration),SDDur=sd(Duration))
#convert NA to zero's
callerData$SDDur[is.na(callerData$SDDur)]<-0.0
#scale data
scaledData<-scale(callerData[,2:4])
set.seed(20)
clust<-kmeans(scaledData, centers= 5,nstart = 15)
#pinning cluster number back onto callerData
callerData$Cluster<-clust$cluster
#getting cluster means and creating a rank order based on "Count"
callerData_centers<-callerData%>%
group_by(Cluster)%>%
summarise(Count=mean(Count),MeanDur=mean(MeanDur),SDDur=mean(SDDur))%>%
arrange(Count)
callerDate_centers$Rank<-c(1:5)
#Once the new ranking variable is created, I then use the code below to consistently name the clusters based on their rank
setDT(callerData_centers)[Rank==1,ClusName:="Cluster 1"]
callerData_centers[Rank==2,ClusName:="Cluster 2"]
callerData_centers[Rank==3,ClusName:="Cluster 3"]
callerData_centers[Rank==4,ClusName:="Cluster 4"]
callerData_centers[Rank==5,ClusName:="Cluster 5"]
#get the ClusName variable and the Cluster; this is then used to merge the new name back onto callerData
callerData_vars<-callerData_centers%>%select(Cluster,ClusName)
callerData<-merge(callerData,callerData_vars, by="Cluster")
newVars<-callerData%>%
select(CallerId,ClusterName)%>%
mutate(MonthYear=i)
resultsdf<-rbind(resultsdf,newVars)
}
head(resultsdf)
因此代码从 MonthYear<=i
向后过滤并对其进行聚类。但我想知道的是,有没有一种方法可以检测某些用户是从一个集群移动到另一个集群还是消失了?例如,id_sample=abcdef
在集群 1 中停留了 7 个月,但在 7 个月后移至集群 4。我怎么能检测到这个?
我不得不稍微更改一下您的代码才能实现 运行。 CallerId
和 ClusterName
不属于 callerData
。所以首先 运行 这个:
library(Pareto)
library(uuid)
library(ggplot2)
library(data.table)
library(zoo)
library(dplyr)
#generating the user ID variable
#generating the user ID variable
set.seed(1)
n_users <- 1300
n_rows <- 365000
relative_probs <-
rPareto(
n = n_users,
t = 1,
alpha = 0.3,
truncation = 500
)
unique_ids <- UUIDgenerate(n = n_users)
id_sample <-
sample(unique_ids,
size = n_rows,
prob = relative_probs,
replace = TRUE)
id_sample
df <- data.frame(id_sample)
#creating the date variable
df$Date <-
sample(seq(as.Date("2015-01-01"), as.Date("2017-12-31"), by = "1 day"),
size = n_rows,
replace = T)
#creating a numeric value called Duration; this will be a feature in the clustering
df$Duration <- sample(0:3000, nrow(df), replace = T)
df <- df %>% arrange(Date)
#getting Month-Year
df$MonthYear <- as.Date(as.yearmon(df$Date, "%m/%Y"))
MonthYear <- unique(df$MonthYear)
#empty results df
resultsdf <- data.frame()
for (i in MonthYear) {
#getting variables for clustering. I need to cluster based on the number of times the User appears in the data i.e. "Count"
#the second variable is the mean duration for each User ID i.e. "MeanDur"
#the third and final variable is the standard deviation of duration i.e. "SDDur"
df_filtered <- df %>%
filter(MonthYear <= i)
callerData <- df_filtered %>%
group_by(id_sample) %>%
summarise(
Count = n(),
MeanDur = mean(Duration),
SDDur = sd(Duration)
)
#convert NA to zero's
callerData$SDDur[is.na(callerData$SDDur)] <- 0.0
#scale data
scaledData <- scale(callerData[, 2:4])
set.seed(20)
clust <- kmeans(scaledData, centers = 5, nstart = 15)
#pinning cluster number back onto callerData
callerData$Cluster <- clust$cluster
#getting cluster means and creating a rank order based on "Count"
callerData_centers <- callerData %>%
group_by(Cluster) %>%
summarise(
Count = mean(Count),
MeanDur = mean(MeanDur),
SDDur = mean(SDDur)
) %>%
arrange(Count)
callerData_centers$Rank <- c(1:5)
#Once the new ranking variable is created, I then use the code below to consistently name the clusters based on their rank
setDT(callerData_centers)[Rank == 1, ClusName := "Cluster 1"]
callerData_centers[Rank == 2, ClusName := "Cluster 2"]
callerData_centers[Rank == 3, ClusName := "Cluster 3"]
callerData_centers[Rank == 4, ClusName := "Cluster 4"]
callerData_centers[Rank == 5, ClusName := "Cluster 5"]
#get the ClusName variable and the Cluster; this is then used to merge the new name back onto callerData
callerData_vars <-
callerData_centers %>% select(Cluster, ClusName)
callerData <- merge(callerData, callerData_vars, by = "Cluster")
newVars <- callerData %>%
select(id_sample, ClusName) %>%
mutate(MonthYear = i)
resultsdf <- rbind(resultsdf, newVars)
}
然后,您可以将数据框重塑为宽格式,并看到一些 ID 会从一个集群跳到另一个集群(例如,第 5 行中的第 4 列到第 5 列)
# long to wide
dfwide <- data.table::dcast(resultsdf, formula = id_sample ~ MonthYear, value.var = 'ClusName')
colnames(dfwide)[2:37] <- paste0('Date_', MonthYear)
> dfwide[1:5, 1:5]
id_sample Date_2015-01-01 Date_2015-02-01 Date_2015-03-01 Date_2015-04-01
1 0025a4ba-d620-4ffc-a82d-660354c2b21d <NA> Cluster 3 Cluster 3 Cluster 3
2 00403759-46d8-4c60-b298-a57e6299b2ca Cluster 3 Cluster 3 Cluster 3 Cluster 3
3 005e6e19-8e02-4326-993d-1fffa0b70c67 Cluster 4 Cluster 4 Cluster 4 Cluster 4
4 007c99ef-7e37-42c0-8883-90c275c03eab Cluster 3 Cluster 3 Cluster 3 Cluster 3
5 007e70f9-d960-4679-8088-a1065ea9835c Cluster 3 Cluster 3 Cluster 3 Cluster 2
然后您可以检查哪些 ID 没有留在一个集群中:
# check if they stay in their cluster:
dfwide_subset <- na.omit(dfwide) # drop rows with NAs
res <- dfwide_subset[, c(2:5)] == dfwide_subset[, 2]
res <- data.frame('id_sample' = dfwide_subset$id_sample,
'switches_cluster' = rowSums(!res))
> head(res)
id_sample switches_cluster
2 00403759-46d8-4c60-b298-a57e6299b2ca 0
3 005e6e19-8e02-4326-993d-1fffa0b70c67 0
4 007c99ef-7e37-42c0-8883-90c275c03eab 0
5 007e70f9-d960-4679-8088-a1065ea9835c 1
6 00b90528-5ee1-40f2-a2ba-5b6fc4b3707f 0
8 00d5cf0c-e2b4-4ed6-a69c-776b83ff8697 0
我正在处理纵向用户事件生成的数据集,我正在尝试使用 k-means 在月-年级别对数据中的用户 ID 进行聚类。这个想法是我想看看用户是如何在不同的时间点从不同的集群原型中消失或进入的。
这是我目前的代码,其中包含模拟数据框和聚类过程。
library(Pareto)
library(uuid)
library(ggplot2)
library(data.table)
library(zoo)
#generating the user ID variable
set.seed(1)
n_users <- 1300
n_rows <- 365000
relative_probs <- rPareto(n = n_users, t = 1, alpha = 0.3, truncation = 500)
unique_ids <- UUIDgenerate(n = n_users)
id_sample <- sample(unique_ids, size = n_rows, prob = relative_probs, replace = TRUE)
id_sample
df<-data.frame(id_sample)
#creating the date variable
df$Date<-sample(seq(as.Date("2015-01-01"), as.Date("2017-12-31"), by = "1 day"),
size = n_rows,replace = T)
#creating a numeric value called Duration; this will be a feature in the clustering
df$Duration<-sample(0:3000, nrow(df), replace = T)
df<-df%>%arrange(Date)
#getting Month-Year
df$MonthYear<-as.Date(as.yearmon(df$Date, "%m/%Y"))
MonthYear<-unique(df$MonthYear)
#empty results df
resultsdf<-data.frame()
for (i in MonthYear) {
#getting variables for clustering. I need to cluster based on the number of times the User appears in the data i.e. "Count"
#the second variable is the mean duration for each User ID i.e. "MeanDur"
#the third and final variable is the standard deviation of duration i.e. "SDDur"
df_filtered<-df%>%
filter(MonthYear<=i)
callerData<-df_filtered%>%
group_by(id_sample)%>%
summarise(Count=n(),MeanDur=mean(Duration),SDDur=sd(Duration))
#convert NA to zero's
callerData$SDDur[is.na(callerData$SDDur)]<-0.0
#scale data
scaledData<-scale(callerData[,2:4])
set.seed(20)
clust<-kmeans(scaledData, centers= 5,nstart = 15)
#pinning cluster number back onto callerData
callerData$Cluster<-clust$cluster
#getting cluster means and creating a rank order based on "Count"
callerData_centers<-callerData%>%
group_by(Cluster)%>%
summarise(Count=mean(Count),MeanDur=mean(MeanDur),SDDur=mean(SDDur))%>%
arrange(Count)
callerDate_centers$Rank<-c(1:5)
#Once the new ranking variable is created, I then use the code below to consistently name the clusters based on their rank
setDT(callerData_centers)[Rank==1,ClusName:="Cluster 1"]
callerData_centers[Rank==2,ClusName:="Cluster 2"]
callerData_centers[Rank==3,ClusName:="Cluster 3"]
callerData_centers[Rank==4,ClusName:="Cluster 4"]
callerData_centers[Rank==5,ClusName:="Cluster 5"]
#get the ClusName variable and the Cluster; this is then used to merge the new name back onto callerData
callerData_vars<-callerData_centers%>%select(Cluster,ClusName)
callerData<-merge(callerData,callerData_vars, by="Cluster")
newVars<-callerData%>%
select(CallerId,ClusterName)%>%
mutate(MonthYear=i)
resultsdf<-rbind(resultsdf,newVars)
}
head(resultsdf)
因此代码从 MonthYear<=i
向后过滤并对其进行聚类。但我想知道的是,有没有一种方法可以检测某些用户是从一个集群移动到另一个集群还是消失了?例如,id_sample=abcdef
在集群 1 中停留了 7 个月,但在 7 个月后移至集群 4。我怎么能检测到这个?
我不得不稍微更改一下您的代码才能实现 运行。 CallerId
和 ClusterName
不属于 callerData
。所以首先 运行 这个:
library(Pareto)
library(uuid)
library(ggplot2)
library(data.table)
library(zoo)
library(dplyr)
#generating the user ID variable
#generating the user ID variable
set.seed(1)
n_users <- 1300
n_rows <- 365000
relative_probs <-
rPareto(
n = n_users,
t = 1,
alpha = 0.3,
truncation = 500
)
unique_ids <- UUIDgenerate(n = n_users)
id_sample <-
sample(unique_ids,
size = n_rows,
prob = relative_probs,
replace = TRUE)
id_sample
df <- data.frame(id_sample)
#creating the date variable
df$Date <-
sample(seq(as.Date("2015-01-01"), as.Date("2017-12-31"), by = "1 day"),
size = n_rows,
replace = T)
#creating a numeric value called Duration; this will be a feature in the clustering
df$Duration <- sample(0:3000, nrow(df), replace = T)
df <- df %>% arrange(Date)
#getting Month-Year
df$MonthYear <- as.Date(as.yearmon(df$Date, "%m/%Y"))
MonthYear <- unique(df$MonthYear)
#empty results df
resultsdf <- data.frame()
for (i in MonthYear) {
#getting variables for clustering. I need to cluster based on the number of times the User appears in the data i.e. "Count"
#the second variable is the mean duration for each User ID i.e. "MeanDur"
#the third and final variable is the standard deviation of duration i.e. "SDDur"
df_filtered <- df %>%
filter(MonthYear <= i)
callerData <- df_filtered %>%
group_by(id_sample) %>%
summarise(
Count = n(),
MeanDur = mean(Duration),
SDDur = sd(Duration)
)
#convert NA to zero's
callerData$SDDur[is.na(callerData$SDDur)] <- 0.0
#scale data
scaledData <- scale(callerData[, 2:4])
set.seed(20)
clust <- kmeans(scaledData, centers = 5, nstart = 15)
#pinning cluster number back onto callerData
callerData$Cluster <- clust$cluster
#getting cluster means and creating a rank order based on "Count"
callerData_centers <- callerData %>%
group_by(Cluster) %>%
summarise(
Count = mean(Count),
MeanDur = mean(MeanDur),
SDDur = mean(SDDur)
) %>%
arrange(Count)
callerData_centers$Rank <- c(1:5)
#Once the new ranking variable is created, I then use the code below to consistently name the clusters based on their rank
setDT(callerData_centers)[Rank == 1, ClusName := "Cluster 1"]
callerData_centers[Rank == 2, ClusName := "Cluster 2"]
callerData_centers[Rank == 3, ClusName := "Cluster 3"]
callerData_centers[Rank == 4, ClusName := "Cluster 4"]
callerData_centers[Rank == 5, ClusName := "Cluster 5"]
#get the ClusName variable and the Cluster; this is then used to merge the new name back onto callerData
callerData_vars <-
callerData_centers %>% select(Cluster, ClusName)
callerData <- merge(callerData, callerData_vars, by = "Cluster")
newVars <- callerData %>%
select(id_sample, ClusName) %>%
mutate(MonthYear = i)
resultsdf <- rbind(resultsdf, newVars)
}
然后,您可以将数据框重塑为宽格式,并看到一些 ID 会从一个集群跳到另一个集群(例如,第 5 行中的第 4 列到第 5 列)
# long to wide
dfwide <- data.table::dcast(resultsdf, formula = id_sample ~ MonthYear, value.var = 'ClusName')
colnames(dfwide)[2:37] <- paste0('Date_', MonthYear)
> dfwide[1:5, 1:5]
id_sample Date_2015-01-01 Date_2015-02-01 Date_2015-03-01 Date_2015-04-01
1 0025a4ba-d620-4ffc-a82d-660354c2b21d <NA> Cluster 3 Cluster 3 Cluster 3
2 00403759-46d8-4c60-b298-a57e6299b2ca Cluster 3 Cluster 3 Cluster 3 Cluster 3
3 005e6e19-8e02-4326-993d-1fffa0b70c67 Cluster 4 Cluster 4 Cluster 4 Cluster 4
4 007c99ef-7e37-42c0-8883-90c275c03eab Cluster 3 Cluster 3 Cluster 3 Cluster 3
5 007e70f9-d960-4679-8088-a1065ea9835c Cluster 3 Cluster 3 Cluster 3 Cluster 2
然后您可以检查哪些 ID 没有留在一个集群中:
# check if they stay in their cluster:
dfwide_subset <- na.omit(dfwide) # drop rows with NAs
res <- dfwide_subset[, c(2:5)] == dfwide_subset[, 2]
res <- data.frame('id_sample' = dfwide_subset$id_sample,
'switches_cluster' = rowSums(!res))
> head(res)
id_sample switches_cluster
2 00403759-46d8-4c60-b298-a57e6299b2ca 0
3 005e6e19-8e02-4326-993d-1fffa0b70c67 0
4 007c99ef-7e37-42c0-8883-90c275c03eab 0
5 007e70f9-d960-4679-8088-a1065ea9835c 1
6 00b90528-5ee1-40f2-a2ba-5b6fc4b3707f 0
8 00d5cf0c-e2b4-4ed6-a69c-776b83ff8697 0