分类数据的响应编码
Response coding for categorical data
响应编码是一种向量化分类数据的技术。比方说,我们有一个名为 'grade_category' 的分类特征,它具有以下唯一标签 - ['grades_3_5'、'grades_prek_2'、'grades_9_12'、'grades_6_8']。
假设我们正在处理目标 class-标签为 0 和 1
的 class化问题
在响应编码中,您必须输出特征中每个标签的概率值,即标签与特定 class-标签一起出现
例如,grades_prek_2 = [它出现的概率 class_0,它出现的概率 class 1]
def response_coding(xtrain, ytrain, feature):
""" this method will encode the categorical features
using response_coding technique.
args:
xtrain, ytrain, feature (all are ndarray)
returns:
dictionary (dict)
"""
dictionary = dict()
x = PrettyTable()
x = PrettyTable([feature, 'class 1', 'class 0'])
unique_cat_labels = xtrain[feature].unique()
for i in tqdm(range(len(unique_cat_labels))):
total_count = xtrain.loc[:,feature][(xtrain[feature] == unique_cat_labels[i])].count()
p_0 = xtrain.loc[:, feature][((xtrain[feature] == unique_cat_labels[i]) & (ytrain==0))].count()
p_1 = xtrain.loc[:, feature][((xtrain[feature] == unique_cat_labels[i]) & (ytrain==1))].count()
dictionary[unique_cat_labels[i]] = [p_1/total_count, p_0/total_count]
row = []
row.append(unique_cat_labels[i])
row.append(p_1/total_count)
row.append(p_0/total_count)
x.add_row(row)
print()
print(x)[![enter image description here][1]][1]
return dictionary
响应编码是一种向量化分类数据的技术。比方说,我们有一个名为 'grade_category' 的分类特征,它具有以下唯一标签 - ['grades_3_5'、'grades_prek_2'、'grades_9_12'、'grades_6_8']。 假设我们正在处理目标 class-标签为 0 和 1
的 class化问题在响应编码中,您必须输出特征中每个标签的概率值,即标签与特定 class-标签一起出现 例如,grades_prek_2 = [它出现的概率 class_0,它出现的概率 class 1]
def response_coding(xtrain, ytrain, feature):
""" this method will encode the categorical features
using response_coding technique.
args:
xtrain, ytrain, feature (all are ndarray)
returns:
dictionary (dict)
"""
dictionary = dict()
x = PrettyTable()
x = PrettyTable([feature, 'class 1', 'class 0'])
unique_cat_labels = xtrain[feature].unique()
for i in tqdm(range(len(unique_cat_labels))):
total_count = xtrain.loc[:,feature][(xtrain[feature] == unique_cat_labels[i])].count()
p_0 = xtrain.loc[:, feature][((xtrain[feature] == unique_cat_labels[i]) & (ytrain==0))].count()
p_1 = xtrain.loc[:, feature][((xtrain[feature] == unique_cat_labels[i]) & (ytrain==1))].count()
dictionary[unique_cat_labels[i]] = [p_1/total_count, p_0/total_count]
row = []
row.append(unique_cat_labels[i])
row.append(p_1/total_count)
row.append(p_0/total_count)
x.add_row(row)
print()
print(x)[![enter image description here][1]][1]
return dictionary