使用特征和邻接矩阵的 numpy 表示构建 networkx/dgl 图
Build networkx/dgl graph with from numpy representations of feature and adjacency matrix
描述
从邻接矩阵生成图形对象(DGL 或 NetworkX)并允许建立节点特征。
结果
我在下面生成了我的解决方案。但是,鼓励其他答案。
代码
import numpy as np
import dgl
import networkx as nx
def numpy_to_graph(A,type_graph='dgl',node_features=None):
'''Convert numpy arrays to graph
Parameters
----------
A : mxm array
Adjacency matrix
type_graph : str
'dgl' or 'nx'
node_features : dict
Optional, dictionary with key=feature name, value=list of size m
Allows user to specify node features
Returns
-------
Graph of 'type_graph' specification
'''
G = nx.from_numpy_array(A)
if node_features != None:
for n in G.nodes():
for k,v in node_features.items():
G.nodes[n][k] = v[n]
if type_graph == 'nx':
return G
G = G.to_directed()
if node_features != None:
node_attrs = list(node_features.keys())
else:
node_attrs = []
g = dgl.from_networkx(G, node_attrs=node_attrs, edge_attrs=['weight'])
return g
例子
邻接矩阵被传递给函数。此外,其他特征(即特征向量、标签等)可以传入node_features
# mxm adjacency matrix
A = np.array([[0,0,0],
[2,0,0],
[5,1,0]])
# Each m row is a feature vector for node m
F = np.array([[1,0,1,4,4],
[2,4,0,12,4],
[5,1,-4,2,9]])
G = numpy_to_graph(A,type_graph='nx',node_features={'feat':F})
import matplotlib.pyplot as plt
pos=nx.spring_layout(G) # pos = nx.nx_agraph.graphviz_layout(G)
nx.draw_networkx(G,pos)
labels = nx.get_edge_attributes(G,'weight')
nx.draw_networkx_edge_labels(G,pos,edge_labels=labels)
plt.show()
描述
从邻接矩阵生成图形对象(DGL 或 NetworkX)并允许建立节点特征。
结果
我在下面生成了我的解决方案。但是,鼓励其他答案。
代码
import numpy as np
import dgl
import networkx as nx
def numpy_to_graph(A,type_graph='dgl',node_features=None):
'''Convert numpy arrays to graph
Parameters
----------
A : mxm array
Adjacency matrix
type_graph : str
'dgl' or 'nx'
node_features : dict
Optional, dictionary with key=feature name, value=list of size m
Allows user to specify node features
Returns
-------
Graph of 'type_graph' specification
'''
G = nx.from_numpy_array(A)
if node_features != None:
for n in G.nodes():
for k,v in node_features.items():
G.nodes[n][k] = v[n]
if type_graph == 'nx':
return G
G = G.to_directed()
if node_features != None:
node_attrs = list(node_features.keys())
else:
node_attrs = []
g = dgl.from_networkx(G, node_attrs=node_attrs, edge_attrs=['weight'])
return g
例子
邻接矩阵被传递给函数。此外,其他特征(即特征向量、标签等)可以传入node_features
# mxm adjacency matrix
A = np.array([[0,0,0],
[2,0,0],
[5,1,0]])
# Each m row is a feature vector for node m
F = np.array([[1,0,1,4,4],
[2,4,0,12,4],
[5,1,-4,2,9]])
G = numpy_to_graph(A,type_graph='nx',node_features={'feat':F})
import matplotlib.pyplot as plt
pos=nx.spring_layout(G) # pos = nx.nx_agraph.graphviz_layout(G)
nx.draw_networkx(G,pos)
labels = nx.get_edge_attributes(G,'weight')
nx.draw_networkx_edge_labels(G,pos,edge_labels=labels)
plt.show()