当我 运行 这个搜索算法时空白输出屏幕
Blank output screen when I run this searching algorithm
我一直在练习中值搜索算法,这就是我写的-
#include <iostream>
#include <stdlib.h>
using namespace std;
int S1[10] = { 0 };
int S2[1] = { 0 };
int S3[10] = { 0 };
int mediansearch(int A[], int k, int size)
{
int ran = rand() % size;
int i = 0;
int a = 0;
int b = 0;
int c = 0;
for (i = 0; i < size; i++)
{
if (A[ran] > A[i])
{
S1[a] = A[i];
a++;
}
else if (A[ran] == A[i])
{
S2[b] = A[i];
b++;
}
else
{
S3[c] = A[i];
c++;
}
}
if (a <= k)
{
return mediansearch(S1, k, a);
}
else if (a + b <= k)
{
return A[ran];
}
else
{
return mediansearch(S3, k - a - b, c);
}
}
int main()
{
int arr[] = { 6, 5, 4, 8, 99, 74, 23 };
int n = sizeof(arr) / sizeof(arr[0]);
int x = mediansearch(arr, 5, n);
cout << "5th smallest is:" << x << endl;
}
我得到的输出是-
Process returned -1073741676 (0xC0000094) execution time : 1.704 s
So, what am I doing wrong? Any kind of help will be appreciated.
此代码存在一些问题,第一个是变量命名。
我建议你以后选择更有意义的名字,因为当别人必须理解你的代码和你的想法时,好的命名是基础。
另一件事是参数的顺序违反直觉,因为与数组相关的对由您要查找的索引分隔。
我会写 int mediansearch(int A[], int size, int k)
这里比较相反,k
应该是小于而不是大于等于a
if (a <= k) // (k < a)
{
return mediansearch(S1, k, a);
}
else if (a + b <= k) // (k < a + b)
{
return A[ran];
}
else
{
return mediansearch(S3, k - a - b, c);
}
另一件事是您在所有递归调用中共享 S1、S2 和 S3,这导致了一些我无法识别的错误,也许有人发表评论会帮助我。
但是,我建议您阅读这篇文章,它详细解释了您尝试实施的过程:https://rcoh.me/posts/linear-time-median-finding/
它是 python,但它可以很容易地移植到 C/C++,事实上我就是这样做的。
#include <iostream>
#include <stdlib.h>
#include <assert.h>
#include <time.h>
using namespace std;
int medianSearch(int A[], int size, int k)
{
int *lows = (int *)calloc(size, sizeof(int));
int lowsLen = 0;
int *highs = (int *)calloc(size, sizeof(int));
int highsLen = 0;
int *pivots = (int *)calloc(size, sizeof(int));
int pivotsLen = 0;
int median;
int pivot;
int i;
if (size == 1)
return A[0];
// Other ways of randomly picking a pivot
// pivot = 0;
// pivot = size-1;
// pivot = size/2;
assert(size > 0);
pivot = rand() % size;
for (i = 0; i < size; ++i)
{
if (A[i] < A[pivot])
{
lows[lowsLen] = A[i];
lowsLen++;
}
else if (A[i] > A[pivot])
{
highs[highsLen] = A[i];
highsLen++;
}
else
{
pivots[pivotsLen] = A[i];
pivotsLen++;
}
}
if (k < lowsLen)
median = medianSearch(lows, lowsLen, k);
else if (k < lowsLen + pivotsLen)
median = A[pivot];
else
median = medianSearch(highs, highsLen, k - lowsLen - pivotsLen);
free(lows);
free(highs);
free(pivots);
return median;
}
int compare(const void *a, const void *b)
{
return ( *(int *)a - *(int *)b );
}
int medianSorted(int A[], int size, int k)
{
qsort(A, size, sizeof(int), compare);
return A[k];
}
#define N 1000
int main()
{
int arr[N];
int brr[N];
int n = sizeof(arr) / sizeof(arr[0]);
int k = 200;
int x;
int y;
for (int i = 0; i < n; ++i)
arr[i] = brr[i] = rand();
x = medianSearch(arr, n, (k-1)%n);
y = medianSorted(brr, n, (k-1)%n);
string suffix;
switch (k % 10)
{
case 1: suffix = "st"; break;
case 2: suffix = "nd"; break;
case 3: suffix = "rd"; break;
case 4:
case 5:
case 6:
case 7:
case 8:
case 9:
case 0: suffix = "th"; break;
}
cout << k << suffix << " smallest is: " << x << endl;
cout << k << suffix << " smallest is: " << y << endl;
}
我一直在练习中值搜索算法,这就是我写的-
#include <iostream>
#include <stdlib.h>
using namespace std;
int S1[10] = { 0 };
int S2[1] = { 0 };
int S3[10] = { 0 };
int mediansearch(int A[], int k, int size)
{
int ran = rand() % size;
int i = 0;
int a = 0;
int b = 0;
int c = 0;
for (i = 0; i < size; i++)
{
if (A[ran] > A[i])
{
S1[a] = A[i];
a++;
}
else if (A[ran] == A[i])
{
S2[b] = A[i];
b++;
}
else
{
S3[c] = A[i];
c++;
}
}
if (a <= k)
{
return mediansearch(S1, k, a);
}
else if (a + b <= k)
{
return A[ran];
}
else
{
return mediansearch(S3, k - a - b, c);
}
}
int main()
{
int arr[] = { 6, 5, 4, 8, 99, 74, 23 };
int n = sizeof(arr) / sizeof(arr[0]);
int x = mediansearch(arr, 5, n);
cout << "5th smallest is:" << x << endl;
}
我得到的输出是-
Process returned -1073741676 (0xC0000094) execution time : 1.704 s So, what am I doing wrong? Any kind of help will be appreciated.
此代码存在一些问题,第一个是变量命名。
我建议你以后选择更有意义的名字,因为当别人必须理解你的代码和你的想法时,好的命名是基础。
另一件事是参数的顺序违反直觉,因为与数组相关的对由您要查找的索引分隔。
我会写 int mediansearch(int A[], int size, int k)
这里比较相反,k
应该是小于而不是大于等于a
if (a <= k) // (k < a)
{
return mediansearch(S1, k, a);
}
else if (a + b <= k) // (k < a + b)
{
return A[ran];
}
else
{
return mediansearch(S3, k - a - b, c);
}
另一件事是您在所有递归调用中共享 S1、S2 和 S3,这导致了一些我无法识别的错误,也许有人发表评论会帮助我。
但是,我建议您阅读这篇文章,它详细解释了您尝试实施的过程:https://rcoh.me/posts/linear-time-median-finding/
它是 python,但它可以很容易地移植到 C/C++,事实上我就是这样做的。
#include <iostream>
#include <stdlib.h>
#include <assert.h>
#include <time.h>
using namespace std;
int medianSearch(int A[], int size, int k)
{
int *lows = (int *)calloc(size, sizeof(int));
int lowsLen = 0;
int *highs = (int *)calloc(size, sizeof(int));
int highsLen = 0;
int *pivots = (int *)calloc(size, sizeof(int));
int pivotsLen = 0;
int median;
int pivot;
int i;
if (size == 1)
return A[0];
// Other ways of randomly picking a pivot
// pivot = 0;
// pivot = size-1;
// pivot = size/2;
assert(size > 0);
pivot = rand() % size;
for (i = 0; i < size; ++i)
{
if (A[i] < A[pivot])
{
lows[lowsLen] = A[i];
lowsLen++;
}
else if (A[i] > A[pivot])
{
highs[highsLen] = A[i];
highsLen++;
}
else
{
pivots[pivotsLen] = A[i];
pivotsLen++;
}
}
if (k < lowsLen)
median = medianSearch(lows, lowsLen, k);
else if (k < lowsLen + pivotsLen)
median = A[pivot];
else
median = medianSearch(highs, highsLen, k - lowsLen - pivotsLen);
free(lows);
free(highs);
free(pivots);
return median;
}
int compare(const void *a, const void *b)
{
return ( *(int *)a - *(int *)b );
}
int medianSorted(int A[], int size, int k)
{
qsort(A, size, sizeof(int), compare);
return A[k];
}
#define N 1000
int main()
{
int arr[N];
int brr[N];
int n = sizeof(arr) / sizeof(arr[0]);
int k = 200;
int x;
int y;
for (int i = 0; i < n; ++i)
arr[i] = brr[i] = rand();
x = medianSearch(arr, n, (k-1)%n);
y = medianSorted(brr, n, (k-1)%n);
string suffix;
switch (k % 10)
{
case 1: suffix = "st"; break;
case 2: suffix = "nd"; break;
case 3: suffix = "rd"; break;
case 4:
case 5:
case 6:
case 7:
case 8:
case 9:
case 0: suffix = "th"; break;
}
cout << k << suffix << " smallest is: " << x << endl;
cout << k << suffix << " smallest is: " << y << endl;
}