Pytorch 模型 运行 在 CPU 和 GPU 上内存不足,不知道我做错了什么
Pytorch model running out of memory on both CPU and GPU, can’t figure out what I’m doing wrong
尝试使用 Pytorch Lightning 实现一个简单的多标签图像分类器。这是模型定义:
import torch
from torch import nn
# creates network class
class Net(pl.LightningModule):
def __init__(self):
super().__init__()
# defines conv layers
self.conv_layer_b1 = nn.Sequential(
nn.Conv2d(in_channels=3, out_channels=32,
kernel_size=3, padding=1),
nn.ReLU(),
nn.MaxPool2d(kernel_size=2, stride=2),
nn.Flatten(),
)
# passes dummy x matrix to find the input size of the fc layer
x = torch.randn(1, 3, 800, 600)
self._to_linear = None
self.forward(x)
# defines fc layer
self.fc_layer = nn.Sequential(
nn.Linear(in_features=self._to_linear,
out_features=256),
nn.ReLU(),
nn.Linear(256, 5),
)
# defines accuracy metric
self.accuracy = pl.metrics.Accuracy()
self.confusion_matrix = pl.metrics.ConfusionMatrix(num_classes=5)
def forward(self, x):
x = self.conv_layer_b1(x)
if self._to_linear is None:
# does not run fc layer if input size is not determined yet
self._to_linear = x.shape[1]
else:
x = self.fc_layer(x)
return x
def cross_entropy_loss(self, logits, y):
criterion = nn.CrossEntropyLoss()
return criterion(logits, y)
def training_step(self, train_batch, batch_idx):
x, y = train_batch
logits = self.forward(x)
train_loss = self.cross_entropy_loss(logits, y)
train_acc = self.accuracy(logits, y)
train_cm = self.confusion_matrix(logits, y)
self.log('train_loss', train_loss)
self.log('train_acc', train_acc)
self.log('train_cm', train_cm)
return train_loss
def validation_step(self, val_batch, batch_idx):
x, y = val_batch
logits = self.forward(x)
val_loss = self.cross_entropy_loss(logits, y)
val_acc = self.accuracy(logits, y)
return {'val_loss': val_loss, 'val_acc': val_acc}
def validation_epoch_end(self, outputs):
avg_val_loss = torch.stack([x['val_loss'] for x in outputs]).mean()
avg_val_acc = torch.stack([x['val_acc'] for x in outputs]).mean()
self.log("val_loss", avg_val_loss)
self.log("val_acc", avg_val_acc)
def configure_optimizers(self):
optimizer = torch.optim.Adam(self.parameters(), lr=0.0008)
return optimizer
问题可能不是机器,因为我使用的是具有 60 GB RAM 和 12 GB VRAM 的云实例。每当我 运行 这个模型,即使是一个时期,我也会遇到内存不足的错误。在 CPU 上它看起来像这样:
RuntimeError: [enforce fail at CPUAllocator.cpp:64] . DefaultCPUAllocator: can't allocate memory: you tried to allocate 1966080000 bytes. Error code 12 (Cannot allocate memory)
在 GPU 上看起来像这样:
RuntimeError: CUDA out of memory. Tried to allocate 7.32 GiB (GPU 0; 11.17 GiB total capacity; 4.00 KiB already allocated; 2.56 GiB free; 2.00 MiB reserved in total by PyTorch)
清除缓存和减小批处理大小无效。我是个新手,所以很明显这里有什么东西在爆炸,但我不知道是什么。任何帮助将不胜感激。
谢谢!
的确,这不是机器问题;模型本身大得不合理。通常,如果你看一下常见的 CNN 模型,fc 层出现在接近尾端,在输入已经通过相当多的卷积块(并且它们的空间分辨率降低)之后。
假设输入的形状为 (batch, 3, 800, 600)
,在通过 conv_layer_b1
层时,特征图形状在 MaxPool
操作后将为 (batch, 32, 400, 300)
。展平后,输入变为 (batch, 32 * 400 * 300)
,即 (batch, 3840000)
.
紧接着的fc_layer
因此包含nn.Linear(3840000, 256)
,这简直是荒谬的。这个单一的线性层包含约 9.83 亿个可训练参数!作为参考,流行的图像分类 CNN 平均大约有 3 到 3000 万个参数,较大的变体达到 60 到 8000 万个。很少有人真正突破 1 亿大关。
你可以用这个来计算你的模型参数:
def count_params(model):
return sum(map(lambda p: p.data.numel(), model.parameters()))
我的建议:800 x 600 确实是一个巨大的输入尺寸。如果可能,将其缩小到 400 x 300。此外,在FC层之前添加几个类似于conv_layer_b1
的卷积块。例如:
def get_conv_block(C_in, C_out):
return nn.Sequential(
nn.Conv2d(in_channels=C_in, out_channels=C_out,
kernel_size=3, padding=1),
nn.ReLU(),
nn.MaxPool2d(kernel_size=2, stride=2)
)
class Net(pl.LightningModule):
def __init__(self):
super().__init__()
# defines conv layers
self.conv_layer_b1 = get_conv_block(3, 16)
self.conv_layer_b2 = get_conv_block(16, 32)
self.conv_layer_b3 = get_conv_block(32, 64)
self.conv_layer_b4 = get_conv_block(64, 128)
self.conv_layer_b5 = get_conv_block(128, 256)
# passes dummy x matrix to find the input size of the fc layer
x = torch.randn(1, 3, 800, 600)
self._to_linear = None
self.forward(x)
# defines fc layer
self.fc_layer = nn.Sequential(
nn.Flatten(),
nn.Linear(in_features=self._to_linear,
out_features=256),
nn.ReLU(),
nn.Linear(256, 5)
)
# defines accuracy metric
self.accuracy = pl.metrics.Accuracy()
self.confusion_matrix = pl.metrics.ConfusionMatrix(num_classes=5)
def forward(self, x):
x = self.conv_layer_b1(x)
x = self.conv_layer_b2(x)
x = self.conv_layer_b3(x)
x = self.conv_layer_b4(x)
x = self.conv_layer_b5(x)
if self._to_linear is None:
# does not run fc layer if input size is not determined yet
self._to_linear = nn.Flatten()(x).shape[1]
else:
x = self.fc_layer(x)
return x
在这里,因为应用了更多的 conv-relu-pool 层,输入被缩减为更小形状的特征图,(batch, 256, 25, 18)
,可训练参数的总数将减少到大约~3000 万个参数。
尝试使用 Pytorch Lightning 实现一个简单的多标签图像分类器。这是模型定义:
import torch
from torch import nn
# creates network class
class Net(pl.LightningModule):
def __init__(self):
super().__init__()
# defines conv layers
self.conv_layer_b1 = nn.Sequential(
nn.Conv2d(in_channels=3, out_channels=32,
kernel_size=3, padding=1),
nn.ReLU(),
nn.MaxPool2d(kernel_size=2, stride=2),
nn.Flatten(),
)
# passes dummy x matrix to find the input size of the fc layer
x = torch.randn(1, 3, 800, 600)
self._to_linear = None
self.forward(x)
# defines fc layer
self.fc_layer = nn.Sequential(
nn.Linear(in_features=self._to_linear,
out_features=256),
nn.ReLU(),
nn.Linear(256, 5),
)
# defines accuracy metric
self.accuracy = pl.metrics.Accuracy()
self.confusion_matrix = pl.metrics.ConfusionMatrix(num_classes=5)
def forward(self, x):
x = self.conv_layer_b1(x)
if self._to_linear is None:
# does not run fc layer if input size is not determined yet
self._to_linear = x.shape[1]
else:
x = self.fc_layer(x)
return x
def cross_entropy_loss(self, logits, y):
criterion = nn.CrossEntropyLoss()
return criterion(logits, y)
def training_step(self, train_batch, batch_idx):
x, y = train_batch
logits = self.forward(x)
train_loss = self.cross_entropy_loss(logits, y)
train_acc = self.accuracy(logits, y)
train_cm = self.confusion_matrix(logits, y)
self.log('train_loss', train_loss)
self.log('train_acc', train_acc)
self.log('train_cm', train_cm)
return train_loss
def validation_step(self, val_batch, batch_idx):
x, y = val_batch
logits = self.forward(x)
val_loss = self.cross_entropy_loss(logits, y)
val_acc = self.accuracy(logits, y)
return {'val_loss': val_loss, 'val_acc': val_acc}
def validation_epoch_end(self, outputs):
avg_val_loss = torch.stack([x['val_loss'] for x in outputs]).mean()
avg_val_acc = torch.stack([x['val_acc'] for x in outputs]).mean()
self.log("val_loss", avg_val_loss)
self.log("val_acc", avg_val_acc)
def configure_optimizers(self):
optimizer = torch.optim.Adam(self.parameters(), lr=0.0008)
return optimizer
问题可能不是机器,因为我使用的是具有 60 GB RAM 和 12 GB VRAM 的云实例。每当我 运行 这个模型,即使是一个时期,我也会遇到内存不足的错误。在 CPU 上它看起来像这样:
RuntimeError: [enforce fail at CPUAllocator.cpp:64] . DefaultCPUAllocator: can't allocate memory: you tried to allocate 1966080000 bytes. Error code 12 (Cannot allocate memory)
在 GPU 上看起来像这样:
RuntimeError: CUDA out of memory. Tried to allocate 7.32 GiB (GPU 0; 11.17 GiB total capacity; 4.00 KiB already allocated; 2.56 GiB free; 2.00 MiB reserved in total by PyTorch)
清除缓存和减小批处理大小无效。我是个新手,所以很明显这里有什么东西在爆炸,但我不知道是什么。任何帮助将不胜感激。
谢谢!
的确,这不是机器问题;模型本身大得不合理。通常,如果你看一下常见的 CNN 模型,fc 层出现在接近尾端,在输入已经通过相当多的卷积块(并且它们的空间分辨率降低)之后。
假设输入的形状为 (batch, 3, 800, 600)
,在通过 conv_layer_b1
层时,特征图形状在 MaxPool
操作后将为 (batch, 32, 400, 300)
。展平后,输入变为 (batch, 32 * 400 * 300)
,即 (batch, 3840000)
.
紧接着的fc_layer
因此包含nn.Linear(3840000, 256)
,这简直是荒谬的。这个单一的线性层包含约 9.83 亿个可训练参数!作为参考,流行的图像分类 CNN 平均大约有 3 到 3000 万个参数,较大的变体达到 60 到 8000 万个。很少有人真正突破 1 亿大关。
你可以用这个来计算你的模型参数:
def count_params(model):
return sum(map(lambda p: p.data.numel(), model.parameters()))
我的建议:800 x 600 确实是一个巨大的输入尺寸。如果可能,将其缩小到 400 x 300。此外,在FC层之前添加几个类似于conv_layer_b1
的卷积块。例如:
def get_conv_block(C_in, C_out):
return nn.Sequential(
nn.Conv2d(in_channels=C_in, out_channels=C_out,
kernel_size=3, padding=1),
nn.ReLU(),
nn.MaxPool2d(kernel_size=2, stride=2)
)
class Net(pl.LightningModule):
def __init__(self):
super().__init__()
# defines conv layers
self.conv_layer_b1 = get_conv_block(3, 16)
self.conv_layer_b2 = get_conv_block(16, 32)
self.conv_layer_b3 = get_conv_block(32, 64)
self.conv_layer_b4 = get_conv_block(64, 128)
self.conv_layer_b5 = get_conv_block(128, 256)
# passes dummy x matrix to find the input size of the fc layer
x = torch.randn(1, 3, 800, 600)
self._to_linear = None
self.forward(x)
# defines fc layer
self.fc_layer = nn.Sequential(
nn.Flatten(),
nn.Linear(in_features=self._to_linear,
out_features=256),
nn.ReLU(),
nn.Linear(256, 5)
)
# defines accuracy metric
self.accuracy = pl.metrics.Accuracy()
self.confusion_matrix = pl.metrics.ConfusionMatrix(num_classes=5)
def forward(self, x):
x = self.conv_layer_b1(x)
x = self.conv_layer_b2(x)
x = self.conv_layer_b3(x)
x = self.conv_layer_b4(x)
x = self.conv_layer_b5(x)
if self._to_linear is None:
# does not run fc layer if input size is not determined yet
self._to_linear = nn.Flatten()(x).shape[1]
else:
x = self.fc_layer(x)
return x
在这里,因为应用了更多的 conv-relu-pool 层,输入被缩减为更小形状的特征图,(batch, 256, 25, 18)
,可训练参数的总数将减少到大约~3000 万个参数。