确认 ( x + d/dx ) exp( -x^2 / 2 ) = 0
Confirm that ( x + d/dx ) exp( -x^2 / 2 ) = 0
我写了一个小代码来验证( x + d/dx ) exp(-x^2 / 2 ) = 0
。这个想法是使用傅里叶级数 exp( 2 * pi j n x / L )
具有足够大的 L
来表示高斯并在那里执行操作。
Matlab中的算法工作原理如下:
function[] = verify
epsilon = 0.05; % step-size numerical integration
N = 40; % number of Fourier coefficients
L = 30; % window length numerical integration Fourier basis
X = -L / 2:epsilon:L / 2; % grid
xFourier = zeros(2 * N + 1); %Allocate space for Fourier coefficients of f(x)=x
inix = zeros(2 * N + 1); % Allocate space for Fourier coefficients of f(x)=exp(-x^2/2)
% Compute Fourier coefficients of f(x)=x
for i1=-N:N
A = X.*exp(-2 * pi * 1i * i1. * X / L ) / sqrt( L );
xFourier(i1 + ( N + 1 ) ) = trapz( X, A );
end
% Compute Fourier coefficients of f(x)=exp(-x^2/2)
for i1 = -N : N
A = 1 / sqrt(L) * exp(-X.^2 / 2 ). * exp(-2 * pi * 1i * i1. * X / L );
inix( i1 + N + 1 ) = trapz( X, A ); % These are the Fourier coefficients of the |x|^2*Gaussian part
end
TO = Hamilton( N, xFourier, L );
norm( TO * inix' )
end
所以上述算法的核心是我调用的函数 Hamilton,它包含运算符 x d/dx
的矩阵表示,这就是为什么 norm( TO * inix' )
应该 return 一些东西接近于零,但不是(?)并且函数Hamilton如下
function [ Hamilton ] = Hamilton( N, xFourier, L)
Hamilton = zeros( ( 2 * N + 1 ),( 2 * N + 1 ) );
for i1 = -N : N
for i2 = -N : N
if i1 == i2
Hamilton(
(i1 + ( N + 1 ) ), ( i2 + ( N + 1 ) )
) = Hamilton(
( i1 + ( N + 1)),( i2 + ( N + 1 ) )
) + 1i * 2 * pi / L * i1;
end
if abs( i2 - i1 ) <= N
Hamilton(
( i1 + ( N + 1 ) ), ( i2 + ( N + 1 ) )
) = Hamilton(
(i1 + ( N + 1 ) ), ( i2 + ( N + 1 ) )
) + xFourier( i1 - i2 + ( N + 1 ) );
end
end
end
end
有人看错了吗?
虽然不喜欢 Matlab ,但我有点遗漏了代码中的一些术语,例如导数的因子 2 pi j k
。所以我在这里放了一个 Python 版本的我认为它应该是什么样子的(对 Python 感到抱歉,但我想它很容易转换为 Matlab):
import numpy as np
## non-normalized gaussian with sigma=1
def gauss( x ):
return np.exp( -x**2 / 2 )
## interval on which the gaussian is evaluated
L = 10
## number of sampling points
N = 21
## sample rate
dl = L / N
## highest frequency detectable
kmax= 1 / ( 2 * dl )
## array of x values
xl = np.linspace( -L/2, L/2, N )
## array of k values
kl = np.linspace( -kmax, kmax, N )
## matrix of exponents
## the Fourier transform is defined via sum f * exp( -2 pi j k x)
## i.e. the 2 pi is in the exponent
## normalization is sqrt(N) where n is the number of sampling points
## this definition makes it forward-backward symmetric
## "outer" also exists in Matlab and basically does the same
exponent = np.outer( -1j * 2 * np.pi * kl, xl )
## linear operator for the standard Fourier transformation
A = np.exp( exponent ) / np.sqrt( N )
## nth derivative is given via partial integration as ( 2 pi j k)^n f(k)
## every row needs to be multiplied by the according k
B = np.array( [ 1j * 2 * np.pi * kk * An for kk, An in zip( kl, A ) ] )
## for the part with the linear term, every column needs to be multiplied
## by the according x or--as here---every row is multiplied element
## wise with the x-vector
C = np.array( [ xl * An for An in A ] )
## thats the according linear operator
D = B + C
## the gaussian
yl = gauss( xl )
## the transformation with the linear operator
print( np.dot( D, yl ).round( decimals=9 ) )
## ...results in a zero-vector, as expected
提供:
[ 0.+4.61e-07j 0.-3.75e-07j 0.+1.20e-08j 0.+3.09e-07j -0.-5.53e-07j
0.+6.95e-07j -0.-7.28e-07j 0.+6.54e-07j -0.-4.91e-07j -0.+2.62e-07j
-0.+0.00e+00j -0.-2.62e-07j -0.+4.91e-07j -0.-6.54e-07j 0.+7.28e-07j
-0.-6.95e-07j 0.+5.53e-07j -0.-3.09e-07j 0.-1.20e-08j 0.+3.75e-07j
0.-4.61e-07j]
这基本上是零。
我写了一个小代码来验证( x + d/dx ) exp(-x^2 / 2 ) = 0
。这个想法是使用傅里叶级数 exp( 2 * pi j n x / L )
具有足够大的 L
来表示高斯并在那里执行操作。
Matlab中的算法工作原理如下:
function[] = verify
epsilon = 0.05; % step-size numerical integration
N = 40; % number of Fourier coefficients
L = 30; % window length numerical integration Fourier basis
X = -L / 2:epsilon:L / 2; % grid
xFourier = zeros(2 * N + 1); %Allocate space for Fourier coefficients of f(x)=x
inix = zeros(2 * N + 1); % Allocate space for Fourier coefficients of f(x)=exp(-x^2/2)
% Compute Fourier coefficients of f(x)=x
for i1=-N:N
A = X.*exp(-2 * pi * 1i * i1. * X / L ) / sqrt( L );
xFourier(i1 + ( N + 1 ) ) = trapz( X, A );
end
% Compute Fourier coefficients of f(x)=exp(-x^2/2)
for i1 = -N : N
A = 1 / sqrt(L) * exp(-X.^2 / 2 ). * exp(-2 * pi * 1i * i1. * X / L );
inix( i1 + N + 1 ) = trapz( X, A ); % These are the Fourier coefficients of the |x|^2*Gaussian part
end
TO = Hamilton( N, xFourier, L );
norm( TO * inix' )
end
所以上述算法的核心是我调用的函数 Hamilton,它包含运算符 x d/dx
的矩阵表示,这就是为什么 norm( TO * inix' )
应该 return 一些东西接近于零,但不是(?)并且函数Hamilton如下
function [ Hamilton ] = Hamilton( N, xFourier, L)
Hamilton = zeros( ( 2 * N + 1 ),( 2 * N + 1 ) );
for i1 = -N : N
for i2 = -N : N
if i1 == i2
Hamilton(
(i1 + ( N + 1 ) ), ( i2 + ( N + 1 ) )
) = Hamilton(
( i1 + ( N + 1)),( i2 + ( N + 1 ) )
) + 1i * 2 * pi / L * i1;
end
if abs( i2 - i1 ) <= N
Hamilton(
( i1 + ( N + 1 ) ), ( i2 + ( N + 1 ) )
) = Hamilton(
(i1 + ( N + 1 ) ), ( i2 + ( N + 1 ) )
) + xFourier( i1 - i2 + ( N + 1 ) );
end
end
end
end
有人看错了吗?
虽然不喜欢 Matlab ,但我有点遗漏了代码中的一些术语,例如导数的因子 2 pi j k
。所以我在这里放了一个 Python 版本的我认为它应该是什么样子的(对 Python 感到抱歉,但我想它很容易转换为 Matlab):
import numpy as np
## non-normalized gaussian with sigma=1
def gauss( x ):
return np.exp( -x**2 / 2 )
## interval on which the gaussian is evaluated
L = 10
## number of sampling points
N = 21
## sample rate
dl = L / N
## highest frequency detectable
kmax= 1 / ( 2 * dl )
## array of x values
xl = np.linspace( -L/2, L/2, N )
## array of k values
kl = np.linspace( -kmax, kmax, N )
## matrix of exponents
## the Fourier transform is defined via sum f * exp( -2 pi j k x)
## i.e. the 2 pi is in the exponent
## normalization is sqrt(N) where n is the number of sampling points
## this definition makes it forward-backward symmetric
## "outer" also exists in Matlab and basically does the same
exponent = np.outer( -1j * 2 * np.pi * kl, xl )
## linear operator for the standard Fourier transformation
A = np.exp( exponent ) / np.sqrt( N )
## nth derivative is given via partial integration as ( 2 pi j k)^n f(k)
## every row needs to be multiplied by the according k
B = np.array( [ 1j * 2 * np.pi * kk * An for kk, An in zip( kl, A ) ] )
## for the part with the linear term, every column needs to be multiplied
## by the according x or--as here---every row is multiplied element
## wise with the x-vector
C = np.array( [ xl * An for An in A ] )
## thats the according linear operator
D = B + C
## the gaussian
yl = gauss( xl )
## the transformation with the linear operator
print( np.dot( D, yl ).round( decimals=9 ) )
## ...results in a zero-vector, as expected
提供:
[ 0.+4.61e-07j 0.-3.75e-07j 0.+1.20e-08j 0.+3.09e-07j -0.-5.53e-07j
0.+6.95e-07j -0.-7.28e-07j 0.+6.54e-07j -0.-4.91e-07j -0.+2.62e-07j
-0.+0.00e+00j -0.-2.62e-07j -0.+4.91e-07j -0.-6.54e-07j 0.+7.28e-07j
-0.-6.95e-07j 0.+5.53e-07j -0.-3.09e-07j 0.-1.20e-08j 0.+3.75e-07j
0.-4.61e-07j]
这基本上是零。