如何为稀疏数据正确匹配 pandas 多索引数据帧乘法

How to correctly match pandas multiindex dataframe multiplication for sparse data

我在 post 之前搜索过,我在其他人中找到了 但我认为它没有回答我的问题。

我想将稀疏数据相乘并与索引正确匹配,其中数据是多级索引。

我在不同日期对多个 element_id 的不同 attribute 进行了观察,但数据稀疏:

这是我的第二个数组 df_weight_at_date 每个 element_id 的权重列表(python 在 post 的底部创建)

对于每个日期,我想将值相乘,因此例如在我观察到的数据中 A/1/2021-01-15 (0.87) 应该乘以日期 1/2021-01-15 (0.3) 的权重以获得值0.261

如果任一值为 NaN,则结果为 NaN,输出帧的形状将与 df_observations 数据帧相同。

我试过使用 .multiply 但得到错误号 ValueError: cannot join with no overlapping index names

df_observations.multiply(df_weight_at_date.unstack())

此数据的预期输出

有点新手 - 希望得到任何指点,谢谢

创建数据框的代码


df_observations=pd.DataFrame({'observed_date':['2021-01-15','2021-01-15','2021-01-15','2021-01-15','2021-01-15','2021-01-15','2021-01-15','2021-01-15','2021-01-15','2021-01-15','2021-01-15','2021-01-15','2021-01-15','2021-01-15','2021-01-15','2021-01-15','2021-01-15','2021-01-16','2021-01-16','2021-01-16','2021-01-16','2021-01-16','2021-01-16','2021-01-16','2021-01-16','2021-01-16','2021-01-16','2021-01-16','2021-01-16','2021-01-16'],
               'element_id':[1,2,3,4,5,6,7,1,2,3,4,5,6,7,1,2,3,2,3,4,5,6,7,3,2,3,4,5,6,7],
                'factor_id':['A','A','A','A','A','A','A','B','B','B','B','B','B','B','C','C','C','A','A','A','A','A','A','F','F','B','B','B','B','B'],
               'observation':[0.87,0.84,0.15,0.6,0.17,0.76,0.03,0.91,0.05,0.38,0.06,0.27,0.92,0.27,0.16,0.71,0.32,0.92,0.88,0.53,0.79,0.15,0.3,0.16,0.36,0.05,0.22,0.73,0.7,0.9]}).pivot(index=['observed_date','element_id'], columns='factor_id', values='observation')


df_weight_at_date=pd.DataFrame({'observed_date':['2021-01-15','2021-01-15','2021-01-15',
                                 '2021-01-16','2021-01-17','2021-01-18',
                                 '2021-01-19','2021-01-20','2021-01-18'
                                ],
               'element_id':[1,3,5,1,3,5,1,3,9],
               'weight':[0.3,0.35,0.35,1,1,0.4,1,1,0.6]}).pivot(index=['element_id'], columns='observed_date', values='weight')

在更正输入帧使索引名称匹配后(observation_date -> observed_date)这现在可以工作并且我认为足够简洁

df_observations.multiply(df_weight_at_date.unstack(), axis=0)

结果

你可以尝试解压df_weight_at_date:

df_observations.mul(df_weight_at_date.unstack().fillna(1)
                    .reindex(df_observations.index, fill_value=1),
                    axis=0
                   )

输出:

factor_id                      A       B      C     F
observed_date element_id                             
2021-01-15    1           0.2610  0.2730  0.048   NaN
              2           0.8400  0.0500  0.710   NaN
              3           0.0525  0.1330  0.112   NaN
              4           0.6000  0.0600    NaN   NaN
              5           0.0595  0.0945    NaN   NaN
              6           0.7600  0.9200    NaN   NaN
              7           0.0300  0.2700    NaN   NaN
2021-01-16    2           0.9200     NaN    NaN  0.36
              3           0.8800  0.0500    NaN  0.16
              4           0.5300  0.2200    NaN   NaN
              5           0.7900  0.7300    NaN   NaN
              6           0.1500  0.7000    NaN   NaN
              7           0.3000  0.9000    NaN   NaN

这也应该有效:

df_weight_at_date.stack().swaplevel().to_frame('A').reindex(df_observations.columns,axis=1).ffill(axis=1).mul(df_observations)