Error: The tuning parameter grid should have columns fL, usekernel, adjust. K fold Cross Validation
Error: The tuning parameter grid should have columns fL, usekernel, adjust. K fold Cross Validation
我该如何解决这个问题 error.I 我自己尝试解决了这个错误,但仍然没有成功,有人能帮助我吗?
library(caret)
diabet<-read.csv(file.choose(),header = T,sep=",")
diabet$Outcome<-as.factor(diabet$Outcome)
# define training control
train_control<- trainControl(method="cv", number=10)
# fix the parameters of the algorithm
grid <- expand.grid(.fL=c(0), .usekernel=c(FALSE))
# train the model
model <- train(Outcome~BMI, data=diabet,
trControl=train_control, method="nb", tuneGrid=grid)
# summarize results
print(model)
我收到这个错误:
Error: The tuning parameter grid should have columns fL, usekernel, adjust
如错误中所述,您缺少一个调整参数 adjust
。你可以这样看:
getModelInfo("nb")$nb$parameters
parameter class label
1 fL numeric Laplace Correction
2 usekernel logical Distribution Type
3 adjust numeric Bandwidth Adjustment
如果包含它,应该可以工作:
library(caret)
diabet = data.frame(Outcome = sample(c("Yes","No"),100,replace=TRUE),
BMI = runif(100))
train_control<- trainControl(method="cv", number=10)
grid <- expand.grid(.fL=c(0), .usekernel=c(FALSE),.adjust=0.5)
model <- train(Outcome~BMI, data=diabet,
trControl=train_control, method="nb", tuneGrid=grid)
Naive Bayes
100 samples
1 predictor
2 classes: 'No', 'Yes'
No pre-processing
Resampling: Cross-Validated (10 fold)
Summary of sample sizes: 90, 90, 91, 90, 90, 90, ...
Resampling results:
Accuracy Kappa
0.4187879 -0.1685569
Tuning parameter 'fL' was held constant at a value of 0
Tuning
parameter 'usekernel' was held constant at a value of FALSE
Tuning
parameter 'adjust' was held constant at a value of 0.5
我该如何解决这个问题 error.I 我自己尝试解决了这个错误,但仍然没有成功,有人能帮助我吗?
library(caret)
diabet<-read.csv(file.choose(),header = T,sep=",")
diabet$Outcome<-as.factor(diabet$Outcome)
# define training control
train_control<- trainControl(method="cv", number=10)
# fix the parameters of the algorithm
grid <- expand.grid(.fL=c(0), .usekernel=c(FALSE))
# train the model
model <- train(Outcome~BMI, data=diabet,
trControl=train_control, method="nb", tuneGrid=grid)
# summarize results
print(model)
我收到这个错误:
Error: The tuning parameter grid should have columns fL, usekernel, adjust
如错误中所述,您缺少一个调整参数 adjust
。你可以这样看:
getModelInfo("nb")$nb$parameters
parameter class label
1 fL numeric Laplace Correction
2 usekernel logical Distribution Type
3 adjust numeric Bandwidth Adjustment
如果包含它,应该可以工作:
library(caret)
diabet = data.frame(Outcome = sample(c("Yes","No"),100,replace=TRUE),
BMI = runif(100))
train_control<- trainControl(method="cv", number=10)
grid <- expand.grid(.fL=c(0), .usekernel=c(FALSE),.adjust=0.5)
model <- train(Outcome~BMI, data=diabet,
trControl=train_control, method="nb", tuneGrid=grid)
Naive Bayes
100 samples
1 predictor
2 classes: 'No', 'Yes'
No pre-processing
Resampling: Cross-Validated (10 fold)
Summary of sample sizes: 90, 90, 91, 90, 90, 90, ...
Resampling results:
Accuracy Kappa
0.4187879 -0.1685569
Tuning parameter 'fL' was held constant at a value of 0
Tuning
parameter 'usekernel' was held constant at a value of FALSE
Tuning
parameter 'adjust' was held constant at a value of 0.5