使用 specaccum() 外推物种积累曲线

Extrapolating Species Accumulation Curves using specaccum()

我正在使用两种不同的调查方法查看在热带雨林保护区发现的一些 amphibians/reptiles 物种。我想比较这些方法,但是一种方法比另一种方法有更多的数据。

在研究地点内,还有三个具有不同干扰程度的不同区域(CCR、PCR 和 SLR),这些区域在两种调查方法内部和之间也有不同程度的努力。

我想为每种方法创建两条外推物种积累曲线,一条包括所有干扰类型,另一条包含干扰类型。

我已经设法创建了累积曲线,但它们并没有根据观察到的个体数量进行推断。我如何推断曲线?

SAves <- specaccum(comm = cves[,4:ncol(cves)],  method = "rarefaction") #getting species accumulation for ves 
SAvCCR <- specaccum(comm = cvCCR[,4:ncol(cves)], method = "rarefaction") #getting species accumulation for ves ccr 
SAvPCR <- specaccum(comm = cvPCR[,4:ncol(cves)], method = "rarefaction") #getting species accumulation for ves pcr 
SAvSLR <- specaccum(comm = cvSLR[,4:ncol(cves)], method = "rarefaction") #getting species accumulation for ves slr

par(mfrow= c(1,2))
plot(SAves[["individuals"]], y=SAves[["richness"]], xlab = "Individuals", ylab="Richness", main = "Visual Encounter Survey Species Accumulation") #plotting species accumulation curves for VES
plot(SAvSLR[["individuals"]], y=SAvSLR[["richness"]], xlab = "Individuals", ylab="Richness", main = "Species Accumulation by Disturbance Type", col = "green", type = "b", xlim = c(30,300), ylim =c(10,40))
lines(SAvCCR[["individuals"]], y=SAvCCR[["richness"]], xlab = "Individuals", ylab="Richness", col = "red", type = "b")
lines(SAvPCR[["individuals"]], y=SAvPCR[["richness"]], xlab = "Individuals", ylab="Richness", col = "blue", type = "b")


SAbox <- specaccum(comm = cbox[,4:ncol(cbox)], method = "rarefaction") #getting species accumulation for herp box 
SAbCCR <- specaccum(comm = cbCCR[,4:ncol(cbox)], method = "rarefaction") #getting species accumulation for herp box ccr 
SAbPCR <- specaccum(comm = cbPCR[,4:ncol(cbox)], method = "rarefaction") #getting species accumulation for herp box pcr 
SAbSLR <- specaccum(comm = cbSLR[,4:ncol(cbox)], method = "rarefaction") #getting species accumulation for herp box slr

par(mfrow= c(1,2))
plot(SAbox[["individuals"]], y=SAbox[["richness"]], xlab = "Individuals", ylab="Richness", type="b") #plotting species accumulation curves for herp box 
plot(SAbSLR[["individuals"]], y=SAbSLR[["richness"]], xlab = "Individuals", ylab="Richness", main = "Species Accumulation by Disturbance Type", col = "green", type = "b", ylim=c(0,35), xlim = c(8, 80))
lines(SAbCCR[["individuals"]], y=SAbCCR[["richness"]], xlab = "Individuals", ylab="Richness", col = "red", type = "b")
lines(SAbPCR[["individuals"]], y=SAbPCR[["richness"]], xlab = "Individuals", ylab="Richness", col = "blue", type = "b")

Rarefaction 和其他 specaccum 工具是插值方法,没有可靠的方法来推断这些结果。然而,fitspecaccum 提供了一些选择来将流行的非线性模型拟合到插值数据,并且这些拟合模型可用于外推 via predict 函数。然而,一般来说,这些模型不太适合插值数据,它们的外推可能同样糟糕。其中一些模型假设有一个渐近上限,但有些模型没有,这确实会影响外推,其中一些结果可能会产生误导(并且无法知道哪些模型在不同时有效)。

有一个名为 BNPvegan(贝叶斯非参数素食主义者)的包,它引入了外推稀疏。但是,包和实际方法仍在开发中,因此请谨慎行事并关注包中的更改。该包可通过 https://github.com/alessandrozito/BNPvegan.

获得

在您的案例中,通常会减少适用于所有案例的人数。它可以是最小样本集中的个体数量和两个个体之间的任何值(原则上也是一个个体,但这没有用,因为你总是有一个物种和一个个体)。但是,您应该知道,在某些情况下,稀疏曲线会交叉,因此稀疏丰富度的排序可能会发生变化。在你的例子中,他们似乎没有穿过你是安全的,但总是检查这个。